enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Depth of discharge - Wikipedia

    en.wikipedia.org/wiki/Depth_of_discharge

    Depth of discharge (DoD) is an important parameter appearing in the context of rechargeable battery operation. Two non-identical definitions can be found in commercial and scientific sources. The depth of discharge is defined as: the maximum fraction of a battery's capacity (given in Ah) which is removed from the charged battery on a regular basis.

  3. Peukert's law - Wikipedia

    en.wikipedia.org/wiki/Peukert's_law

    For example, consider a battery with a capacity of 200 Ah at the C 20 rate (C 20 means the 20-hour rate – i.e. the rate that will fully discharge the battery in 20 hours – which in this case is 10 A). If this battery is discharged at 10 A, it will last 20 hours, giving the rated capacity of 200 Ah.

  4. Comparison of commercial battery types - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_commercial...

    Under certain conditions, some battery chemistries are at risk of thermal runaway, leading to cell rupture or combustion. As thermal runaway is determined not only by cell chemistry but also cell size, cell design and charge, only the worst-case values are reflected here.

  5. Nickel–hydrogen battery - Wikipedia

    en.wikipedia.org/wiki/Nickel–hydrogen_battery

    The open-circuit voltage is 1.55 V, the average voltage during discharge is 1.25 V. [9] While the energy density is only around one third as that of a lithium battery, the distinctive virtue of the nickel–hydrogen battery is its long life: the cells handle more than 20,000 charge cycles [4] with 85% energy efficiency and 100% faradaic efficiency.

  6. Sodium-ion battery - Wikipedia

    en.wikipedia.org/wiki/Sodium-ion_battery

    Their pouch cells have energy densities comparable to commercial Li-ion batteries (160 Wh/kg at cell-level), with good rate performance up to 3C, and cycle lives of 300 (100% depth of discharge) to over 1,000 cycles (80% depth of discharge). Its battery packs have demonstrated use for e-bike and e-scooter applications. [41]

  7. Nickel–zinc battery - Wikipedia

    en.wikipedia.org/wiki/Nickel–zinc_battery

    Nickel–zinc batteries have a charge–discharge curve similar to 1.2 V NiCd or NiMH cells, but with a higher 1.6 V nominal voltage. [5]Nickel–zinc batteries perform well in high-drain applications, and may have the potential to replace lead–acid batteries because of their higher energy-to-mass ratio and higher power-to-mass ratio – as little as 25% of the mass for the same power. [6]

  8. Cutoff voltage - Wikipedia

    en.wikipedia.org/wiki/Cutoff_voltage

    The cut-off voltage is different from one battery to the other and it is highly dependent on the type of battery and the kind of service in which the battery is used. When testing the capacity of a NiMH or NiCd battery a cut-off voltage of 1.0 V per cell is normally used, whereas 0.9 V is normally used as the cut-off voltage of an alkaline cell ...

  9. Lead–acid battery - Wikipedia

    en.wikipedia.org/wiki/Lead–acid_battery

    The lead–acid battery is a type of rechargeable battery first invented in 1859 by French physicist Gaston Planté. It is the first type of rechargeable battery ever created. Compared to modern rechargeable batteries, lead–acid batteries have relatively low energy density. Despite this, they are able to supply high surge currents.