Search results
Results from the WOW.Com Content Network
The roots, stationary points, inflection point and concavity of a cubic polynomial x 3 − 6x 2 + 9x − 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives. The critical points of a cubic function are its stationary points , that is the points where the slope of the function is zero. [ 2 ]
The graph Q 0 consists of a single vertex, while Q 1 is the complete graph on two vertices. Q 2 is a cycle of length 4. The graph Q 3 is the 1-skeleton of a cube and is a planar graph with eight vertices and twelve edges. The graph Q 4 is the Levi graph of the Möbius configuration. It is also the knight's graph for a toroidal chessboard.
According to Brooks' theorem every connected cubic graph other than the complete graph K 4 has a vertex coloring with at most three colors. Therefore, every connected cubic graph other than K 4 has an independent set of at least n/3 vertices, where n is the number of vertices in the graph: for instance, the largest color class in a 3-coloring has at least this many vertices.
For solving the cubic equation x 3 + m 2 x = n where n > 0, Omar Khayyám constructed the parabola y = x 2 /m, the circle that has as a diameter the line segment [0, n/m 2] on the positive x-axis, and a vertical line through the point where the circle and the parabola intersect above the x-axis.
The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 2 3 = 8 or (x + 1) 3. The cube is also the number multiplied by its square: n 3 = n × n 2 = n × n × n. The cube function is the function x ↦ x 3 (often denoted y = x 3) that maps a number to its cube. It is an odd function, as
In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces. It is represented by Schläfli symbol {4,3,3,3} or {4,3 3 }, constructed as 3 tesseracts, {4,3,3}, around each cubic ridge .
The cube-connected cycles of order 3, arranged geometrically on the vertices of a truncated cube. In graph theory, the cube-connected cycles is an undirected cubic graph, formed by replacing each vertex of a hypercube graph by a cycle. It was introduced by Preparata & Vuillemin (1981) for use as a network topology in parallel computing.
In mathematics, a cube root of a number x is a number y such that y 3 = x. ... At x = 0 this graph has a vertical tangent. A unit cube (side = 1) ...