enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    The heat transfer coefficient is the reciprocal of thermal insulance. This is used for building materials and for clothing insulation. There are numerous methods for calculating the heat transfer coefficient in different heat transfer modes, different fluids, flow regimes, and under different thermohydraulic conditions.

  3. Bowen ratio - Wikipedia

    en.wikipedia.org/wiki/Bowen_ratio

    Heat transfer can either occur as sensible heat (differences in temperature without evapotranspiration) or latent heat (the energy required during a change of state, without a change in temperature). The Bowen ratio is generally used to calculate heat lost (or gained) in a substance; it is the ratio of energy fluxes from one state to another by ...

  4. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Molar specific heat capacity (isochoric) C nV = / J⋅K⋅ −1 mol −1: ML 2 T −2 Θ −1 N −1: Specific latent heat: L = / J⋅kg −1: L 2 T −2: Ratio of isobaric to isochoric heat capacity, heat capacity ratio, adiabatic index, Laplace coefficient

  5. Latent heat - Wikipedia

    en.wikipedia.org/wiki/Latent_heat

    The terms sensible heat and latent heat refer to energy transferred between a body and its surroundings, defined by the occurrence or non-occurrence of temperature change; they depend on the properties of the body. Sensible heat is sensed or felt in a process as a change in the body's temperature.

  6. Chvorinov's rule - Wikipedia

    en.wikipedia.org/wiki/Chvorinov's_rule

    Download QR code; Print/export ... The mold constant B can be calculated using the following formula: = ... L = latent heat of fusion ...

  7. Newton's law of cooling - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_cooling

    Formulas and correlations are available in many references to calculate heat transfer coefficients for typical configurations and fluids. For laminar flows, the heat transfer coefficient is usually smaller than in turbulent flows because turbulent flows have strong mixing within the boundary layer on the heat transfer surface. [6]

  8. Penman–Monteith equation - Wikipedia

    en.wikipedia.org/wiki/Penman–Monteith_equation

    The coefficients 0.408 and 900 are not unitless but account for the conversion from energy values to equivalent water depths: radiation [mm day −1] = 0.408 radiation [MJ m −2 day −1]. This reference evapotranspiration ET 0 can then be used to evaluate the evapotranspiration rate ET from unstressed plants through crop coefficients K c : ET ...

  9. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.