Search results
Results from the WOW.Com Content Network
Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned ...
An exponential moving average (EMA), also known as an exponentially weighted moving average (EWMA), [5] is a first-order infinite impulse response filter that applies weighting factors which decrease exponentially. The weighting for each older datum decreases exponentially, never reaching zero. This formulation is according to Hunter (1986). [6]
It shows the slope (i.e. derivative) of a triple-smoothed exponential moving average. [1] [2] The name Trix is from "triple exponential." TRIX is a triple smoothed exponential moving average used in technical analysis to follow trends. Positive TRIX values indicate bullish price trends, while negative TRIX values indicate bearish price trends.
The Double Exponential Moving Average (DEMA) indicator was introduced in January 1994 by Patrick G. Mulloy, in an article in the "Technical Analysis of Stocks & Commodities" magazine: "Smoothing Data with Faster Moving Averages" [1] [2] It attempts to remove the inherent lag associated with Moving Averages by placing more weight on recent values.
The formula for a given N-Day period and for a given data series is: [2] [3] = = + (()) = (,) The idea is do a regular exponential moving average (EMA) calculation but on a de-lagged data instead of doing it on the regular data.
These three series are: the MACD series proper, the "signal" or "average" series, and the "divergence" series which is the difference between the two. The MACD series is the difference between a "fast" (short period) exponential moving average (EMA), and a "slow" (longer period) EMA of the price series. The average series is an EMA of the MACD ...
If the independent variables are not error-free, this is an errors-in-variables model, also outside this scope. Other examples of nonlinear functions include exponential functions, logarithmic functions, trigonometric functions, power functions, Gaussian function, and Lorentz distributions. Some functions, such as the exponential or logarithmic ...
With β = 1, the usual exponential function is recovered. With a stretching exponent β between 0 and 1, the graph of log f versus t is characteristically stretched, hence the name of the function. The compressed exponential function (with β > 1) has less practical importance, with the notable exception of β = 2, which gives the normal ...