enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    The word "factorial" (originally French: factorielle) was first used in 1800 by Louis François Antoine Arbogast, [18] in the first work on Faà di Bruno's formula, [19] but referring to a more general concept of products of arithmetic progressions. The "factors" that this name refers to are the terms of the product formula for the factorial. [20]

  3. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    The ratio of the factorial!, that counts all permutations of an ordered set S with cardinality, and the subfactorial (a.k.a. the derangement function) !, which counts the amount of permutations where no element appears in its original position, tends to as grows.

  4. Hyperfactorial - Wikipedia

    en.wikipedia.org/wiki/Hyperfactorial

    In mathematics, and more specifically number theory, the hyperfactorial of a positive integer is the product of the numbers of the form from to . Definition [ edit ]

  5. Primorial - Wikipedia

    en.wikipedia.org/wiki/Primorial

    In mathematics, and more particularly in number theory, primorial, denoted by "p n #", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers.

  6. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    The rising factorial is also integral to the definition of the hypergeometric function: The hypergeometric function is defined for | | < by the power series (,;;) = = () ()! provided that ,,, …. Note, however, that the hypergeometric function literature typically uses the notation ( a ) n {\displaystyle (a)_{n}} for rising factorials.

  7. Factorion - Wikipedia

    en.wikipedia.org/wiki/Factorion

    Let be a natural number. For a base >, we define the sum of the factorials of the digits [5] [6] of , :, to be the following: ⁡ = =!. where = ⌊ ⁡ ⌋ + is the number of digits in the number in base , ! is the factorial of and

  8. Bhargava factorial - Wikipedia

    en.wikipedia.org/wiki/Bhargava_factorial

    The factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n. For example, 5! = 5×4×3×2×1 = 120. By convention, the value of 0! is defined as 1. This classical factorial function appears prominently in many theorems in number theory. The following are a few of these theorems. [1]

  9. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    (α) to most complex numbers z, this definition has the feature of working for all positive real values of α. Furthermore, when α = 1, this definition is mathematically equivalent to the Π(z) function, described above. Also, when α = 2, this definition is mathematically equivalent to the alternative extension of the double factorial.