Search results
Results from the WOW.Com Content Network
The word "factorial" (originally French: factorielle) was first used in 1800 by Louis François Antoine Arbogast, [18] in the first work on Faà di Bruno's formula, [19] but referring to a more general concept of products of arithmetic progressions. The "factors" that this name refers to are the terms of the product formula for the factorial. [20]
The ratio of the factorial!, that counts all permutations of an ordered set S with cardinality, and the subfactorial (a.k.a. the derangement function) !, which counts the amount of permutations where no element appears in its original position, tends to as grows.
In mathematics, and more specifically number theory, the hyperfactorial of a positive integer is the product of the numbers of the form from to . Definition [ edit ]
In mathematics, and more particularly in number theory, primorial, denoted by "p n #", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers.
The rising factorial is also integral to the definition of the hypergeometric function: The hypergeometric function is defined for | | < by the power series (,;;) = = () ()! provided that ,,, …. Note, however, that the hypergeometric function literature typically uses the notation ( a ) n {\displaystyle (a)_{n}} for rising factorials.
Let be a natural number. For a base >, we define the sum of the factorials of the digits [5] [6] of , :, to be the following: = =!. where = ⌊ ⌋ + is the number of digits in the number in base , ! is the factorial of and
The factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n. For example, 5! = 5×4×3×2×1 = 120. By convention, the value of 0! is defined as 1. This classical factorial function appears prominently in many theorems in number theory. The following are a few of these theorems. [1]
(α) to most complex numbers z, this definition has the feature of working for all positive real values of α. Furthermore, when α = 1, this definition is mathematically equivalent to the Π(z) function, described above. Also, when α = 2, this definition is mathematically equivalent to the alternative extension of the double factorial.