enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. De Morgan's laws - Wikipedia

    en.wikipedia.org/wiki/De_Morgan's_laws

    De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.

  3. De Morgan algebra - Wikipedia

    en.wikipedia.org/wiki/De_Morgan_algebra

    De Morgan algebras are important for the study of the mathematical aspects of fuzzy logic. The standard fuzzy algebra F = ([0, 1], max( x , y ), min( x , y ), 0, 1, 1 − x ) is an example of a De Morgan algebra where the laws of excluded middle and noncontradiction do not hold.

  4. Law (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Law_(mathematics)

    De Morgan's laws: In propositional logic and Boolean algebra, De Morgan's laws, [15] [16] [17] also known as De Morgan's theorem, [18] are a pair of transformation rules that are both valid rules of inference. They are named after Augustus De Morgan, a 19th-century British mathematician.

  5. Rule of replacement - Wikipedia

    en.wikipedia.org/wiki/Rule_of_replacement

    Within the context of a logical proof, logically equivalent expressions may replace each other. Rules of replacement are used in propositional logic to manipulate propositions . Common rules of replacement include de Morgan's laws , commutation , association , distribution , double negation , [ a ] transposition , material implication , logical ...

  6. Inclusion–exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Inclusion–exclusion...

    The principle of inclusion–exclusion, combined with De Morgan's law, can be used to count the cardinality of the intersection of sets as well. Let A k ¯ {\displaystyle {\overline {A_{k}}}} represent the complement of A k with respect to some universal set A such that A k ⊆ A {\displaystyle A_{k}\subseteq A} for each k .

  7. Two-element Boolean algebra - Wikipedia

    en.wikipedia.org/wiki/Two-element_Boolean_algebra

    De Morgan's theorem states that if one does the following, in the given order, to any Boolean function: Complement every variable; Swap '+' and '∙' operators (taking care to add brackets to ensure the order of operations remains the same); Complement the result, the result is logically equivalent to what you started with. Repeated application ...

  8. Material implication (rule of inference) - Wikipedia

    en.wikipedia.org/wiki/Material_implication_(rule...

    The rule states that P implies Q is logically equivalent to not-or and that either form can replace the other in logical proofs. In other words, if P {\displaystyle P} is true, then Q {\displaystyle Q} must also be true, while if Q {\displaystyle Q} is not true, then P {\displaystyle P} cannot be true either; additionally, when P {\displaystyle ...

  9. Augustus De Morgan - Wikipedia

    en.wikipedia.org/wiki/Augustus_De_Morgan

    Augustus De Morgan (27 June 1806 – 18 March 1871) was a British mathematician and logician.He is best known for De Morgan's laws, relating logical conjunction, disjunction, and negation, and for coining the term "mathematical induction", the underlying principles of which he formalized. [1]