Search results
Results from the WOW.Com Content Network
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
De Morgan algebras are important for the study of the mathematical aspects of fuzzy logic. The standard fuzzy algebra F = ([0, 1], max(x, y), min(x, y), 0, 1, 1 − x) is an example of a De Morgan algebra where the laws of excluded middle and noncontradiction do not hold.
The principle of inclusion–exclusion, combined with De Morgan's law, can be used to count the cardinality of the intersection of sets as well. Let A k ¯ {\displaystyle {\overline {A_{k}}}} represent the complement of A k with respect to some universal set A such that A k ⊆ A {\displaystyle A_{k}\subseteq A} for each k .
Pythagorean theorem: It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides. The theorem can be written as an equation relating the lengths of the sides a, b and the hypotenuse c, sometimes called the Pythagorean equation: [6]
De Morgan or de Morgan is a surname, and may refer to: Augustus De Morgan (1806–1871), British mathematician and logician. De Morgan's laws (or De Morgan's theorem), a set of rules from propositional logic. The De Morgan Medal, a triennial mathematics prize awarded by the London Mathematical Society.
Augustus De Morgan (27 June 1806 – 18 March 1871) was a British mathematician and logician.He is best known for De Morgan's laws, relating logical conjunction, disjunction, and negation, and for coining the term "mathematical induction", the underlying principles of which he formalized. [1]
In propositional logic and Boolean algebra, there is a duality between conjunction and disjunction, [1] [2] [3] also called the duality principle. [4] [5] [6] It is the most widely known example of duality in logic. [1]
The entailment relations of paraconsistent logics are propositionally weaker than classical logic; that is, they deem fewer propositional inferences valid. The point is that a paraconsistent logic can never be a propositional extension of classical logic, that is, propositionally validate every entailment that classical logic does.