enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    Animation of Gaussian elimination. Red row eliminates the following rows, green rows change their order. In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients.

  3. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    The above procedure can be repeatedly applied to solve the equation multiple times for different b. In this case it is faster (and more convenient) to do an LU decomposition of the matrix A once and then solve the triangular matrices for the different b, rather than using Gaussian elimination each time

  4. Frontal solver - Wikipedia

    en.wikipedia.org/wiki/Frontal_solver

    A frontal solver is an approach to solving sparse linear systems which is used extensively in finite element analysis. [1] Algorithms of this kind are variants of Gauss elimination that automatically avoids a large number of operations involving zero terms due to the fact that the matrix is only sparse. [2]

  5. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations. A tridiagonal system for n unknowns may be written as

  6. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Comments: The LUP and LU decompositions are useful in solving an n-by-n system of linear equations =. These decompositions summarize the process of Gaussian elimination in matrix form. Matrix P represents any row interchanges

  7. Schur complement - Wikipedia

    en.wikipedia.org/wiki/Schur_complement

    The Schur complement arises when performing a block Gaussian elimination on the matrix M.In order to eliminate the elements below the block diagonal, one multiplies the matrix M by a block lower triangular matrix on the right as follows: = [] [] [] = [], where I p denotes a p×p identity matrix.

  8. MUMPS (software) - Wikipedia

    en.wikipedia.org/wiki/MUMPS_(software)

    The software implements the multifrontal method, which is a version of Gaussian elimination for large sparse systems of equations, especially those arising from the finite element method. It is written in Fortran 90 with parallelism by MPI and it uses BLAS and ScaLAPACK kernels for dense matrix computations.

  9. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Gaussian elimination. Row echelon form — matrix in which all entries below a nonzero entry are zero; Bareiss algorithm — variant which ensures that all entries remain integers if the initial matrix has integer entries; Tridiagonal matrix algorithm — simplified form of Gaussian elimination for tridiagonal matrices