enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Space (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Space_(mathematics)

    In mathematics, a space is a set (sometimes known as a universe) endowed with a structure defining the relationships among the elements of the set. A subspace is a subset of the parent space which retains the same structure.

  3. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. [1] Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.

  4. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    An equivalent definition of a vector space can be given, which is much more concise but less elementary: the first four axioms (related to vector addition) say that a vector space is an abelian group under addition, and the four remaining axioms (related to the scalar multiplication) say that this operation defines a ring homomorphism from the ...

  5. Half-space (geometry) - Wikipedia

    en.wikipedia.org/wiki/Half-space_(geometry)

    A half-space can be either open or closed. An open half-space is either of the two open sets produced by the subtraction of a hyperplane from the affine space. A closed half-space is the union of an open half-space and the hyperplane that defines it. The open (closed) upper half-space is the half-space of all (x 1, x 2, ..., x n) such that x n > 0

  6. Topological space - Wikipedia

    en.wikipedia.org/wiki/Topological_space

    In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance.More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms ...

  7. Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_space

    Euclidean space was introduced by ancient Greeks as an abstraction of our physical space. Their great innovation, appearing in Euclid's Elements was to build and prove all geometry by starting from a few very basic properties, which are abstracted from the physical world, and cannot be mathematically proved because of the lack of more basic tools.

  8. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space.

  9. Regular space - Wikipedia

    en.wikipedia.org/wiki/Regular_space

    A regular space is necessarily also preregular, i.e., any two topologically distinguishable points can be separated by neighbourhoods. Since a Hausdorff space is the same as a preregular T 0 space, a regular space which is also T 0 must be Hausdorff (and thus T 3). In fact, a regular Hausdorff space satisfies the slightly stronger condition T 2½.