enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    A depth-first search ordering (not necessarily the lexicographic one), can be computed by a randomized parallel algorithm in the complexity class RNC. [14] As of 1997, it remained unknown whether a depth-first traversal could be constructed by a deterministic parallel algorithm, in the complexity class NC .

  3. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In depth-first search (DFS), the search tree is deepened as much as possible before going to the next sibling. To traverse binary trees with depth-first search, perform the following operations at each node: [3] [4] If the current node is empty then return. Execute the following three operations in a certain order: [5] N: Visit the current node.

  4. Iterative deepening depth-first search - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_depth...

    Iterative deepening depth-first search; Class: Search algorithm: Data structure: Tree, Graph: Worst-case performance (), where is the branching factor and is the depth of the shallowest solution: Worst-case space complexity [1] Optimal: yes (for unweighted graphs)

  5. Graph traversal - Wikipedia

    en.wikipedia.org/wiki/Graph_traversal

    A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.

  6. Topological sorting - Wikipedia

    en.wikipedia.org/wiki/Topological_sorting

    An alternative algorithm for topological sorting is based on depth-first search.The algorithm loops through each node of the graph, in an arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort or the node has no outgoing edges (i.e., a leaf node):

  7. Maze generation algorithm - Wikipedia

    en.wikipedia.org/wiki/Maze_generation_algorithm

    Maze generation animation using Wilson's algorithm (gray represents an ongoing random walk). Once built the maze is solved using depth first search. All the above algorithms have biases of various sorts: depth-first search is biased toward long corridors, while Kruskal's/Prim's algorithms are biased toward many short dead ends.

  8. Business owners should not forget anti-money laundering rule ...

    www.aol.com/news/business-owners-not-forget-anti...

    Small business owners should not forget about a rule — currently in legal limbo — that would require them to register with an agency called the Financial Crimes Enforcement Network, or FinCEN ...

  9. Trémaux tree - Wikipedia

    en.wikipedia.org/wiki/Trémaux_tree

    All depth-first search trees and all Hamiltonian paths are Trémaux trees. In finite graphs, every Trémaux tree is a depth-first search tree, but although depth-first search itself is inherently sequential, Trémaux trees can be constructed by a randomized parallel algorithm in the complexity class RNC.