Ad
related to: define poset with example pdf form free
Search results
Results from the WOW.Com Content Network
A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.
A power set, partially ordered by inclusion, with rank defined as number of elements, forms a graded poset. In mathematics, in the branch of combinatorics, a graded poset is a partially-ordered set (poset) P equipped with a rank function ρ from P to the set N of all natural numbers. ρ must satisfy the following two properties:
The poset of positive integers has deviation 0: every descending chain is finite, so the defining condition for deviation is vacuously true. However, its opposite poset has deviation 1. Let k be an algebraically closed field and consider the poset of ideals of the polynomial ring k[x] in one variable. Since the deviation of this poset is the ...
A Scott domain is a partially ordered set which is a bounded complete algebraic cpo. Scott open. See Scott topology. Scott topology. For a poset P, a subset O is Scott-open if it is an upper set and all directed sets D that have a supremum in O have non-empty intersection with O. The set of all Scott-open sets forms a topology, the Scott topology.
In mathematics, a differential poset is a partially ordered set (or poset for short) satisfying certain local properties. (The formal definition is given below.) This family of posets was introduced by Stanley (1988) as a generalization of Young's lattice (the poset of integer partitions ordered by inclusion), many of whose combinatorial properties are shared by all differential posets.
Thus, an equivalent definition of the dimension of a poset P is "the least cardinality of a realizer of P." It can be shown that any nonempty family R of linear extensions is a realizer of a finite partially ordered set P if and only if, for every critical pair ( x , y ) of P , y < i x for some order < i in R .
If B is a poset, the set of functions A → B can be ordered by the pointwise order f ≤ g ↔ (∀x ∈ A) f(x) ≤ g(x).. It can be shown that a monotone function f is residuated if and only if there exists a (necessarily unique) monotone function f +: B → A such that f o f + ≤ id B and f + o f ≥ id A, where id is the identity function.
For example, the ideal completion of a given partial order P is the set of all ideals of P ordered by subset inclusion. This construction yields the free dcpo generated by P . An ideal is principal if and only if it is compact in the ideal completion, so the original poset can be recovered as the sub-poset consisting of compact elements.
Ad
related to: define poset with example pdf form free