Search results
Results from the WOW.Com Content Network
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula.
This page was last edited on 26 February 2024, at 23:10 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
Nonmetals have relatively high values of electronegativity, and their oxides are usually acidic. Exceptions may occur if a nonmetal is not very electronegative, or if its oxidation state is low, or both. These non-acidic oxides of nonmetals may be amphoteric (like water, H 2 O [63]) or neutral (like nitrous oxide, N 2 O [64] [h]), but never basic.
the stack alphabet in the formal definition of a pushdown automaton, or the tape-alphabet in the formal definition of a Turing machine; the Feferman–Schütte ordinal Γ 0; represents: the specific weight of substances; the lower incomplete gamma function; the third angle in a triangle, opposite the side c
When said of the value of a variable assuming values from the non-negative extended reals {}, the meaning is usually "not infinite". For example, if the variance of a random variable is said to be finite, this implies it is a non-negative real number, possibly zero. In some contexts though, for example in "a small but finite amplitude", zero ...
definition: is defined as metalanguage:= means "from now on, is defined to be another name for ." This is a statement in the metalanguage, not the object language. The notation may occasionally be seen in physics, meaning the same as :=.
The definition of ℵ 1 implies (in ZF, Zermelo–Fraenkel set theory without the axiom of choice) that no cardinal number is between ℵ 0 and ℵ 1. If the axiom of choice is used, it can be further proved that the class of cardinal numbers is totally ordered , and thus ℵ 1 is the second-smallest infinite cardinal number.