Search results
Results from the WOW.Com Content Network
Ideal diode with a series voltage source and resistor. The I-V characteristic of the final circuit looks like this: I-V characteristic of an ideal diode with a series voltage source and resistor. The real diode now can be replaced with the combined ideal diode, voltage source and resistor and the circuit then is modelled using just linear elements.
Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3] He calls it "a theoretical rectification formula giving the maximum rectification", with a footnote referencing a paper by Carl Wagner , Physikalische Zeitschrift 32 , pp ...
Using these ideal diodes rather than standard diodes for solar electric panel bypass, reverse-battery protection, or bridge rectifiers reduces the amount of power dissipated in the diodes, improving efficiency and reducing the size of the circuit board and the weight of the heat sink required to deal with the power dissipation.
Zener diodes have a low breakdown voltage. A standard value for breakdown voltage is for instance 5.6 V. This means that the voltage at the cathode cannot be more than about 5.6 V higher than the voltage at the anode (though there is a slight rise with current), because the diode breaks down, and therefore conducts, if the voltage gets any higher.
A p–n diode is a type of semiconductor diode based upon the p–n junction. The diode conducts current in only one direction, and it is made by joining a p-type semiconducting layer to an n-type semiconducting layer. Semiconductor diodes have multiple uses including rectification of alternating current to direct current, in the detection of ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The saturation current (or scale current), more accurately the reverse saturation current, is the part of the reverse current in a semiconductor diode caused by diffusion of minority carriers from the neutral regions to the depletion region. This current is almost independent of the reverse voltage. [1]
Get answers to your AOL Mail, login, Desktop Gold, AOL app, password and subscription questions. Find the support options to contact customer care by email, chat, or phone number.