Search results
Results from the WOW.Com Content Network
Nonparametric statistics is a type of statistical analysis that makes minimal assumptions about the underlying distribution of the data being studied. Often these models are infinite-dimensional, rather than finite dimensional, as is parametric statistics. [1]
The Wilcoxon signed-rank test is a nonparametric test of nonindependent data from only two groups. The Skillings–Mack test is a general Friedman-type statistic that can be used in almost any block design with an arbitrary missing-data structure. The Wittkowski test is a general Friedman-Type statistics similar to Skillings-Mack test. When the ...
Nonparametric regression is a category of regression analysis in which the predictor does not take a predetermined form but is constructed according to information derived from the data. That is, no parametric equation is assumed for the relationship between predictors and dependent variable.
Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. Kolmogorov–Smirnov test (K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions that can be used to test whether a sample came from a ...
The Wilcoxon signed-rank test is a non-parametric rank test for statistical hypothesis testing used either to test the location of a population based on a sample of data, or to compare the locations of two populations using two matched samples. [1] The one-sample version serves a purpose similar to that of the one-sample Student's t-test. [2]
The logrank test, or log-rank test, is a hypothesis test to compare the survival distributions of two samples. It is a nonparametric test and appropriate to use when the data are right skewed and censored (technically, the censoring must be non-informative).
Parametric tests assume that the data follow a particular distribution, typically a normal distribution, while non-parametric tests make no assumptions about the distribution. [7] Non-parametric tests have the advantage of being more resistant to misbehaviour of the data, such as outliers . [ 7 ]
Nonparametric statistics is a branch of statistics concerned with non-parametric statistical models and non-parametric statistical tests. Non-parametric statistics are statistics that do not estimate population parameters. In contrast, see parametric statistics.