Search results
Results from the WOW.Com Content Network
As OTC instruments, interest rate swaps (IRSs) can be customised in a number of ways and can be structured to meet the specific needs of the counterparties. For example: payment dates could be irregular, the notional of the swap could be amortized over time, reset dates (or fixing dates) of the floating rate could be irregular, mandatory break clauses may be inserted into the contract, etc.
The participants in the swaption market [2] are predominantly large corporations, banks, financial institutions and hedge funds. End users such as corporations and banks typically use swaptions to manage interest rate risk arising from their core business or from their financing arrangements. For example, a corporation wanting protection from ...
The Black model (sometimes known as the Black-76 model) is a variant of the Black–Scholes option pricing model. Its primary applications are for pricing options on future contracts, bond options, interest rate cap and floors, and swaptions.
In swaptions, or options on interest rate swaps, the market is also pointing to higher 10-year rates, although not as straightf Options market positioned for US Treasury 10-year yield to hit 5% in ...
A basis swap functions as a floating-floating interest rate swap under which the floating rate payments are referenced to different bases. [ 1 ] [ 2 ] The existence of a basis arises from demand and supply imbalances and where, for example, a basis is due for a borrower seeking dollars, this is indicative of a synthetic dollar interest rate in ...
A currency swap involves exchanging principal and fixed rate interest payments on a loan in one currency for principal and fixed rate interest payments on an equal loan in another currency. Just like interest rate swaps, the currency swaps are also motivated by comparative advantage. Currency swaps entail swapping both principal and interest ...
John Hull and Alan White, "One factor interest rate models and the valuation of interest rate derivative securities," Journal of Financial and Quantitative Analysis, Vol 28, No 2, (June 1993) pp. 235–254. John Hull and Alan White, "Pricing interest-rate derivative securities", The Review of Financial Studies, Vol 3, No. 4 (1990) pp. 573–592.
The floating leg of an interest rate swap typically resets against a published index. The floating leg of a constant maturity swap fixes against a point on the swap curve on a periodic basis. A constant maturity swap is an interest rate swap where the interest rate on one leg is reset periodically, but with reference to a market swap rate ...