enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eukaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_DNA_replication

    DNA replication on the lagging strand is discontinuous. In lagging strand synthesis, the movement of DNA polymerase in the opposite direction of the replication fork requires the use of multiple RNA primers. DNA polymerase will synthesize short fragments of DNA called Okazaki fragments which are added to the 3' end of the primer. These ...

  3. Telomere - Wikipedia

    en.wikipedia.org/wiki/Telomere

    On the leading strand (oriented 5'-3' within the replication fork), DNA-polymerase continuously replicates from the point of initiation all the way to the strand's end with the primer (made of RNA) then being excised and substituted by DNA. The lagging strand, however, is oriented 3'-5' with respect to the replication fork so continuous ...

  4. Telomerase - Wikipedia

    en.wikipedia.org/wiki/Telomerase

    The role of telomeres and telomerase in cell aging and cancer was established by scientists at biotechnology company Geron with the cloning of the RNA and catalytic components of human telomerase [9] and the development of a polymerase chain reaction (PCR) based assay for telomerase activity called the TRAP assay, which surveys telomerase ...

  5. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    DNA is read by DNA polymerase in the 3′ to 5′ direction, meaning the new strand is synthesized in the 5' to 3' direction. Since the leading and lagging strand templates are oriented in opposite directions at the replication fork, a major issue is how to achieve synthesis of new lagging strand DNA, whose direction of synthesis is opposite to ...

  6. Okazaki fragments - Wikipedia

    en.wikipedia.org/wiki/Okazaki_fragments

    The synthesis process will continue until the 5’end of the previous Okazaki fragment has arrived. Once arrived, Okazaki fragment processing proceeds to join the newly synthesized fragment to the lagging strand. Last function of DNA polymerase δ is to serve as a supplement to FEN1/RAD27 5’ Flap Endonuclease activity.

  7. Replisome - Wikipedia

    en.wikipedia.org/wiki/Replisome

    This means that nucleotide synthesis on the leading strand naturally occurs in the 5' to 3' direction. However, the lagging strand runs in the opposite direction and this presents quite a challenge since no known replicative polymerases can synthesise DNA in the 3' to 5' direction.

  8. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    As DNA polymerases can only extend a DNA strand in a 5′ to 3′ direction, different mechanisms are used to copy the antiparallel strands of the double helix. [105] In this way, the base on the old strand dictates which base appears on the new strand, and the cell ends up with a perfect copy of its DNA.

  9. Telomerase reverse transcriptase - Wikipedia

    en.wikipedia.org/wiki/Telomerase_reverse...

    Telomerase is a ribonucleoprotein polymerase that maintains telomere ends by addition of the telomere repeat TTAGGG. The enzyme consists of a protein component with reverse transcriptase activity, encoded by this gene, and an RNA component that serves as a template for the telomere repeat.