Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
This relationship is known as Hooke's law. A geometry-dependent version of the idea [a] was first formulated by Robert Hooke in 1675 as a Latin anagram, "ceiiinosssttuv". He published the answer in 1678: "Ut tensio, sic vis" meaning "As the extension, so the force", [5] [6] a linear relationship commonly referred to as Hooke's law.
Hooke's law: The tension on a spring or other elastic object is proportional to the displacement from the equilibrium. Frequently cited in Latin as "Ut tensio sic vis." Named after Robert Hooke (1635–1703).
In 1676 British physicist Robert Hooke postulated Hooke's law, which states that the force a spring exerts is proportional to its extension. On March 8, 1850, John Evans, Founder of John Evans' Sons, Incorporated, opened his business in New Haven, Connecticut, manufacturing flat springs for carriages and other vehicles, as well as the machinery ...
A coil of wire attached to the pointer twists in a magnetic field against the resistance of a torsion spring. Hooke's law ensures that the angle of the pointer is proportional to the current. A DMD or digital micromirror device chip is at the heart of many video projectors. It uses hundreds of thousands of tiny mirrors on tiny torsion springs ...
Generally, at constant temperature, the bulk modulus is defined by: = (). The easiest way to get an equation of state linking P and V is to assume that K is constant, that is to say, independent of pressure and deformation of the solid, then we simply find Hooke's law.
The elastic components, as previously mentioned, can be modeled as springs of elastic constant E, given the formula: = where σ is the stress, E is the elastic modulus of the material, and ε is the strain that occurs under the given stress, similar to Hooke's law.