enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotations in 4-dimensional Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Rotations_in_4-dimensional...

    The 5D rotation group SO(5) and all higher rotation groups contain subgroups isomorphic to O(4). Like SO(4), all even-dimensional rotation groups contain isoclinic rotations. But unlike SO(4), in SO(6) and all higher even-dimensional rotation groups any two isoclinic rotations through the same angle are conjugate.

  3. Point groups in four dimensions - Wikipedia

    en.wikipedia.org/.../Point_groups_in_four_dimensions

    1951, A. C. Hurley, Finite rotation groups and crystal classes in four dimensions, Proceedings of the Cambridge Philosophical Society, vol. 47, issue 04, p. 650 [1] 1962 A. L. MacKay Bravais Lattices in Four-dimensional Space [2] 1964 Patrick du Val, Homographies, quaternions and rotations, quaternion-based 4D point groups

  4. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    A perspective projection onto three-dimensions of a tesseract being rotated in four-dimensional Euclidean space. A general rotation in four dimensions has only one fixed point, the centre of rotation, and no axis of rotation; see rotations in 4-dimensional Euclidean space for details. Instead the rotation has two mutually orthogonal planes of ...

  5. Plane of rotation - Wikipedia

    en.wikipedia.org/wiki/Plane_of_rotation

    In geometry, a plane of rotation is an abstract object used to describe or visualize rotations in space.. The main use for planes of rotation is in describing more complex rotations in four-dimensional space and higher dimensions, where they can be used to break down the rotations into simpler parts.

  6. Rotation - Wikipedia

    en.wikipedia.org/wiki/Rotation

    As dimensions increase the number of rotation vectors increases. Along a four dimensional space (a hypervolume), rotations occur along x, y, z, and w axis. An object rotated on a w axis intersects through various volumes, where each intersection is equal to a self contained volume at an angle. This gives way to a new axis of rotation in a 4d ...

  7. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    For rotations in three dimensions, this is the axis of the rotation (a concept that has no meaning in any other dimension). Second, the other two roots are a pair of complex conjugates, whose product is 1 (the constant term of the quadratic), and whose sum is 2 cos θ (the negated linear term).

  8. Spinor - Wikipedia

    en.wikipedia.org/wiki/Spinor

    To obtain the spinors of physics, such as the Dirac spinor, one extends the construction to obtain a spin structure on 4-dimensional space-time (Minkowski space). Effectively, one starts with the tangent manifold of space-time, each point of which is a 4-dimensional vector space with SO(3,1) symmetry, and then builds the spin group at

  9. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]