enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law [1] of physics that calculates the amount of force between two electrically charged particles at rest. This electric force is conventionally called the electrostatic force or Coulomb force . [ 2 ]

  3. Mass-to-charge ratio - Wikipedia

    en.wikipedia.org/wiki/Mass-to-charge_ratio

    When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.

  4. Coulomb - Wikipedia

    en.wikipedia.org/wiki/Coulomb

    The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI). [ 1 ] [ 2 ] It is defined to be equal to the electric charge delivered by a 1 ampere current in 1 second .

  5. Faraday constant - Wikipedia

    en.wikipedia.org/wiki/Faraday_constant

    In physical chemistry, the Faraday constant (symbol F, sometimes stylized as ℱ) is a physical constant defined as the quotient of the total electric charge (q) by the amount (n) of elementary charge carriers in any given sample of matter: F = q/n; it is expressed in units of coulombs per mole (C/mol).

  6. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    When talking about electrostatic potential energy, time-invariant electric fields are always assumed so, in this case, the electric field is conservative and Coulomb's law can be used. Using Coulomb's law, it is known that the electrostatic force F and the electric field E created by a discrete point charge Q are radially directed from Q.

  7. Electric field - Wikipedia

    en.wikipedia.org/wiki/Electric_field

    The Coulomb force on a charge of magnitude at any point in space is equal to the product of the charge and the electric field at that point =. The SI unit of the electric field is the newton per coulomb (N/C), or volt per meter (V/m); in terms of the SI base units it is kg⋅m⋅s −3 ⋅A −1 .

  8. Lieb–Oxford inequality - Wikipedia

    en.wikipedia.org/wiki/Lieb–Oxford_inequality

    In quantum mechanics, it is also possible to calculate a charge density ρ, which is a function of x ∈ ℝ 3. More specifically, ρ is defined as the expectation value of charge density at each point. But in this case, the above formula for Coulomb energy is not correct, due to exchange and correlation effects. The above, classical formula ...

  9. Effective nuclear charge - Wikipedia

    en.wikipedia.org/wiki/Effective_nuclear_charge

    In this case, the effective nuclear charge can be calculated by Coulomb's law. [ 1 ] However, in an atom with many electrons, the outer electrons are simultaneously attracted to the positive nucleus and repelled by the negatively charged electrons.