Search results
Results from the WOW.Com Content Network
Ishikawa diagrams (also called fishbone diagrams, [1] herringbone diagrams, cause-and-effect diagrams) are causal diagrams created by Kaoru Ishikawa that show the potential causes of a specific event. [2] Common uses of the Ishikawa diagram are product design and quality defect prevention to identify potential factors causing an overall effect ...
Scatter diagram; Stratification (alternatively, flow chart or run chart) The designation arose in postwar Japan, inspired by the seven famous weapons of Benkei. [6] It was possibly introduced by Kaoru Ishikawa who in turn was influenced by a series of lectures W. Edwards Deming had given to Japanese engineers and scientists in 1950. [7]
For example, an "Is/Is Not" worksheet is a common tool employed at D2, and Ishikawa, or "fishbone," diagrams and "5-why analysis" are common tools employed at step D4. In the late 1990s, Ford developed a revised version of the 8D process that they call "Global 8D" (G8D), which is the current global standard for Ford and many other companies in ...
A causal diagram consists of a set of nodes which may or may not be interlinked by arrows. Arrows between nodes denote causal relationships with the arrow pointing from the cause to the effect. There exist several forms of causal diagrams including Ishikawa diagrams, directed acyclic graphs, causal loop diagrams, [10] and why-because graphs (WBGs
In this example, the fifth "why" suggests a broken shelf foot, which can be immediately replaced to prevent the reoccurrence of the sequence of events that resulted in cross-threading bolts. The nature of the answer to the fifth why in the example is also an important aspect of the five why approach, because solving the immediate problem may ...
Kaoru Ishikawa was born in Tokyo, the eldest of the eight sons of Ichiro Ishikawa. In 1937, he graduated from the University of Tokyo with an engineering degree in applied chemistry. After college, he worked as a naval technical officer from 1939 to 1941. From 1941 to 1947, Ishikawa worked at the Nissan Liquid Fuel Company. In 1947, Ishikawa ...
When the process triggers any of the control chart "detection rules", (or alternatively, the process capability is low), other activities may be performed to identify the source of the excessive variation. The tools used in these extra activities include: Ishikawa diagram, designed experiments, and Pareto charts. Designed experiments are a ...
Control charts are graphical plots used in production control to determine whether quality and manufacturing processes are being controlled under stable conditions. (ISO 7870-1) [1] The hourly status is arranged on the graph, and the occurrence of abnormalities is judged based on the presence of data that differs from the conventional trend or deviates from the control limit line.