Search results
Results from the WOW.Com Content Network
Senescence-associated beta-galactosidase, along with p16 Ink4A, is regarded to be a biomarker of cellular senescence. [1] [2] Its existence was proposed in 1995 by Dimri et al. [3] following the observation that when beta-galactosidase assays were carried out at pH 6.0, only cells in senescence state develop staining.
β-Galactosidase (EC 3.2.1.23, beta-gal or β-gal; systematic name β-D-galactoside galactohydrolase) is a glycoside hydrolase enzyme that catalyzes hydrolysis of terminal non-reducing β-D-galactose residues in β-D-galactosides. (This enzyme digests many β-Galactosides, not just lactose.
When the target gene is not found in the vector, the alpha fragment gene would be active, producing the alpha fragment and allowing for B-galactosidase to gain its activity. To trace the activity of B-galactosidase a colorless analog of lactose is used, X-gal. The hydrolysis of X-gal by B-galactosidase produces galactose, a blue colored compound.
The cloned enzyme donor immunoassay (CEDIA) involves genetically engineering an enzyme (e.g., beta-galactosidase) into two inactive fragments: a small enzyme donor (ED) conjugated with the drug analog, and a larger enzyme acceptor (EA). When the two fragments associate, the full enzyme converts a substrate into a cleaved colored product.
Galactosidase alpha is an enzyme that in humans is encoded by the GLA gene. [5] Two recombinant forms of human α-galactosidase are called agalsidase alpha and agalsidase beta (INN). [6] A mold-derived form is the primary ingredient in gas relief supplements. [citation needed]
ortho-Nitrophenyl-β-galactoside (ONPG) is a colorimetric and spectrophotometric substrate for detection of β-galactosidase activity. [1] This compound is normally colorless. However, if β-galactosidase is present, it hydrolyzes the ONPG molecule into galactose and ortho-nitrophen
Galactosialidosis occurs when a patient inherits two copies of a mutated CTSA gene. Encoding of the mutated gene results in a defective form of the protein cathepsin A. When the structure of cathepsin A is disrupted due to mutation, it becomes non-functional and cannot form a digestive complex with neuraminidase-1 and beta-galactosidase.
This process is analogous to hydrolysis of X-gal by Beta-galactosidase [5] to produce blue cells as is commonly practiced in bacterial reporter gene assays. For other types of detection, common substrates are p-nitrophenyl β-D-glucuronide for the spectrophotometric assay and 4-methylumbelliferyl-beta-D-glucuronide (MUG) for the fluorimetric ...