Search results
Results from the WOW.Com Content Network
The severity and lethality of electric shocks generally depend on the duration and the amount of current passing through the human body. Frequency plays a role with AC and pulse DC. For example, a high frequency current has a higher ventricular fibrillation threshold than lower frequency.
Capacitance of a human body in normal surroundings is typically in the tens to low hundreds of picofarads, which is small by typical electronic standards. The human-body model defined by the Electrostatic Discharge Association (ESDA) is a 100 pF capacitor in series with a 1.5 kΩ resistor. [2]
The feeling of an electric shock is caused by the stimulation of nerves as the current flows through the human body. The energy stored as static electricity on an object varies depending on the size of the object and its capacitance, the voltage to which it is charged, and the dielectric constant of the surrounding medium.
Bioelectrical impedance analysis (BIA) is a method for estimating body composition, in particular body fat and muscle mass, where a weak electric current flows through the body, and the voltage is measured in order to calculate impedance (resistance and reactance) of the body. Most body water is stored in muscle.
Human extremities, including fingers, palms, and soles of feet display different bio-electrical phenomena. They can be detected with an EDA meter, a device that displays the change in electrical conductance between two points over time. The two current paths are along the surface of the skin and through the body.
Three elements are required for an electrocution to occur: (a) a charged electrical source, (b) a current pathway through the victim, (c) a ground. The health hazard of an electric current flowing through the body depends on the amount of current and the length of time for which it flows, not merely on the voltage. However, a high voltage is ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The current of injury – also known as the demarcation current, hermann's demarcation current [1] or injury potential [2] – is the electric current from the central part of the body to an injured nerve or muscle, or to another injured excitable tissue. The injured tissue has a negative voltage compared to the central part of the body. [3]