enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. Although many of Euclid's results had ...

  3. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Geometry. In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an idealized ruler and a pair of compasses. The idealized ruler, known as a straightedge, is assumed ...

  4. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    Euclidean group. In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space ; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformations). The group depends only on the dimension n of the space, and is commonly denoted E (n) or ...

  5. Henri Poincaré - Wikipedia

    en.wikipedia.org/wiki/Henri_Poincaré

    He also believed that the geometry of physical space is conventional. He considered examples in which either the geometry of the physical fields or gradients of temperature can be changed, either describing a space as non-Euclidean measured by rigid rulers, or as a Euclidean space where the rulers are expanded or shrunk by a variable heat ...

  6. Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_space

    A point in three-dimensional Euclidean space can be located by three coordinates. Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's Elements, it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer ...

  7. Homothety - Wikipedia

    en.wikipedia.org/wiki/Homothety

    In mathematics, a homothety (or homothecy, or homogeneous dilation) is a transformation of an affine space determined by a point S called its center and a nonzero number called its ratio, which sends point to a point by the rule [1] X {\displaystyle {\overrightarrow {SX'}}=k {\overrightarrow {SX}}} for a fixed number. ≠ {\displaystyle k\neq 0} .

  8. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    Hilbert's axioms are a set of 20 assumptions proposed by David Hilbert in 1899 in his book Grundlagen der Geometrie [1][2][3][4] (tr. The Foundations of Geometry) as the foundation for a modern treatment of Euclidean geometry. Other well-known modern axiomatizations of Euclidean geometry are those of Alfred Tarski and of George Birkhoff.

  9. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Foundations of geometry is the study of geometries as axiomatic systems. There are several sets of axioms which give rise to Euclidean geometry or to non-Euclidean geometries. These are fundamental to the study and of historical importance, but there are a great many modern geometries that are not Euclidean which can be studied from this viewpoint.