Search results
Results from the WOW.Com Content Network
Nanoparticle drug delivery focuses on maximizing drug efficacy and minimizing cytotoxicity. Fine-tuning nanoparticle properties for effective drug delivery involves addressing the following factors. The surface-area-to-volume ratio of nanoparticles can be altered to allow for more ligand binding to the surface. [4]
With the aid of nanoparticle delivery systems, however, studies have shown that some drugs can now cross the BBB, and even exhibit lower toxicity and decrease adverse effects throughout the body. Toxicity is an important concept for pharmacology because high toxicity levels in the body could be detrimental to the patient by affecting other ...
Other potential applications of magnetic nanoparticles are brain imaging and drug delivery past the blood-brain barrier (BBB) using biodegradable magnetic iron oxide nanoparticles. The scope of this application is the treatment of central nervous system (CNS) disorders by functioning as contrast agents and drug carriers.
The most promising drug delivery system is using nanoparticle delivery systems, these are systems where the drug is bound to a nanoparticle capable of traversing the blood–brain barrier. The most promising compound for the nanoparticles is Human Serum Albumin (HSA).
Complex drug delivery mechanisms are being developed, including the ability to get drugs through cell membranes and into cell cytoplasm. Triggered response is one way for drug molecules to be used more efficiently. Drugs are placed in the body and only activate on encountering a particular signal. For example, a drug with poor solubility will ...
Solid lipid nanoparticles can function as the basis for oral and parenteral drug delivery systems. SLNs combine the advantages of lipid emulsion and polymeric nanoparticle systems while overcoming the temporal and in vivo stability issues that troubles the conventional as well as polymeric nanoparticles drug delivery approaches. [10]
Intranasal delivery of carbamazepine nanoparticles increase antiepileptic drug bioavailability. [16] Administering a self-assembling hydrogel with neuroactive drugs to treat Parkinson's disease appears to be biocompatible, low in toxicity, and have a good recovery capacity.
Drug delivery systems have been around for many years, but there are a few recent applications of drug delivery that warrant 1. Drug delivery to the brain: Many drugs can be harmful when administered systemically; the brain is very sensitive to medications and can easily cause damage if a drug is administered directly into the bloodstream.