Search results
Results from the WOW.Com Content Network
where is the set of square numbers. A subject that has received a fair amount of study is that of sets with small doubling , where the size of the set A + A {\displaystyle A+A} is small (compared to the size of A {\displaystyle A} ); see for example Freiman's theorem .
The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...
The sum-product conjecture informally says that one of the sum set or the product set of any set must be nearly as large as possible. It was originally conjectured by Erdős in 1974 to hold whether A is a set of integers, reals, or complex numbers. [ 3 ]
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
The Minkowski sum of two sets and of real numbers is the set + := {+:,} consisting of all possible arithmetic sums of pairs of numbers, one from each set. The infimum and supremum of the Minkowski sum satisfy, if A ≠ ∅ ≠ B {\displaystyle A\neq \varnothing \neq B} inf ( A + B ) = ( inf A ) + ( inf B ) {\displaystyle \inf(A+B)=(\inf A ...
The red figure is the Minkowski sum of blue and green figures. In geometry, the Minkowski sum of two sets of position vectors A and B in Euclidean space is formed by adding each vector in A to each vector in B:
The natural sum and natural product operations on ordinals were defined in 1906 by Gerhard Hessenberg, and are sometimes called the Hessenberg sum (or product) (Sierpiński 1958). The natural sum of α and β is often denoted by α ⊕ β or α # β, and the natural product by α ⊗ β or α ⨳ β. The natural sum and product are defined as ...
is used for the series, and, if it is convergent, to its sum. This convention is similar to that which is used for addition: a + b denotes the operation of adding a and b as well as the result of this addition, which is called the sum of a and b. Any series that is not convergent is said to be divergent or to diverge.