Search results
Results from the WOW.Com Content Network
To highlight the fact that order and disorder are commonly understood to be measured in terms of entropy, below are current science encyclopedia and science dictionary definitions of entropy: A measure of the unavailability of a system's energy to do work; also a measure of disorder; the higher the entropy the greater the disorder. [4]
Entropy (order and disorder) Extropy – a metaphorical term defining the extent of a living or organizational system's intelligence, functional order, vitality, energy, life, experience, and capacity and drive for improvement and growth; Negentropy – a shorthand colloquial phrase for negative entropy [63]
In physics, the terms order and disorder designate the presence or absence of some symmetry or correlation in a many-particle system. [ citation needed ] In condensed matter physics , systems typically are ordered at low temperatures ; upon heating, they undergo one or several phase transitions into less ordered states.
The more such states are available to the system with appreciable probability, the greater the entropy. In statistical mechanics, entropy is a measure of the number of ways a system can be arranged, often taken to be a measure of "disorder" (the higher the entropy, the higher the disorder).
As a measure of disorder: Traditionally, 20th century textbooks have introduced entropy as order and disorder so that it provides "a measurement of the disorder or randomness of a system". It has been argued that ambiguities in, and arbitrary interpretations of, the terms used (such as "disorder" and "chaos") contribute to widespread confusion ...
Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...
This quantity is the amount of entropy that may be increased without changing an internal energy or increasing its volume. [9] In other words, it is a difference between maximum possible, under assumed conditions, entropy and its actual entropy. It corresponds exactly to the definition of negentropy adopted in statistics and information theory.
Because free energy can be expressed as the expected energy of observations under the variational density minus its entropy, it is also related to the maximum entropy principle. [19] Finally, because the time average of energy is action, the principle of minimum variational free energy is a principle of least action. Active inference allowing ...