Search results
Results from the WOW.Com Content Network
In physics and engineering, a resultant force is the single force and associated torque obtained by combining a system of forces and torques acting on a rigid body via vector addition. The defining feature of a resultant force, or resultant force-torque, is that it has the same effect on the rigid body as the original system of forces. [1]
Because the angle of the equilibrant force is opposite of the resultant force, if 180 degrees are added or subtracted to the resultant force's angle, the equilibrant force's angle will be known. Multiplying the resultant force vector by a -1 will give the correct equilibrant force vector: <-10, -8>N x (-1) = <10, 8>N = C.
The magnitude of the resultant varies from the difference of the magnitudes of the two forces to their sum, depending on the angle between their lines of action. [4]: ch.12 [5] Free body diagrams of a block on a flat surface and an inclined plane. Forces are resolved and added together to determine their magnitudes and the net force.
Resultant force and torque replaces the effects of a system of forces acting on the movement of a rigid body. An interesting special case is a torque-free resultant, which can be found as follows: Vector addition is used to find the net force; Use the equation to determine the point of application with zero torque:
The resultant moment of a couple is a special case of moment. ... then the magnitude of the torque is given by the following formula: ... The magnitude of the torque ...
The resultant or net force on the ball found by vector addition of the normal force exerted by the road and vertical force due to gravity must equal the centripetal force dictated by the need to travel a circular path. The curved motion is maintained so long as this net force provides the centripetal force requisite to the motion.
Momentum is a vector quantity, so impulse is also a vector quantity: =. [1] Newton’s second law of motion states that the rate of change of momentum of an object is equal to the resultant force F acting on the object: =,
[9] [10] The magnitude of torque applied to a rigid body depends on three quantities: the force applied, the lever arm vector [11] connecting the point about which the torque is being measured to the point of force application, and the angle between the force and lever arm vectors. In symbols: