enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mauchly's sphericity test - Wikipedia

    en.wikipedia.org/wiki/Mauchly's_sphericity_test

    Interpreting Mauchly's test is fairly straightforward. When the probability of Mauchly's test statistic is greater than or equal to α {\displaystyle \alpha } (i.e., p > α {\displaystyle \alpha } , with α {\displaystyle \alpha } commonly being set to .05), we fail to reject the null hypothesis that the variances are equal.

  3. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    Unpaired samples are also called independent samples. Paired samples are also called dependent. Finally, there are some statistical tests that perform analysis of relationship between multiple variables like regression. [1] Number of samples: The number of samples of data. Exactness: A test can be exact or be asymptotic delivering approximate ...

  4. Univariate (statistics) - Wikipedia

    en.wikipedia.org/wiki/Univariate_(statistics)

    Univariate is a term commonly used in statistics to describe a type of data which consists of observations on only a single characteristic or attribute. A simple example of univariate data would be the salaries of workers in industry. [1]

  5. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    In statistics, Grubbs's test or the Grubbs test (named after Frank E. Grubbs, who published the test in 1950 [1]), also known as the maximum normalized residual test or extreme studentized deviate test, is a test used to detect outliers in a univariate data set assumed to come from a normally distributed population.

  6. General linear model - Wikipedia

    en.wikipedia.org/wiki/General_linear_model

    Hypothesis tests with the general linear model can be made in two ways: multivariate or as several independent univariate tests. In multivariate tests the columns of Y are tested together, whereas in univariate tests the columns of Y are tested independently, i.e., as multiple univariate tests with the same design matrix.

  7. Anderson–Darling test - Wikipedia

    en.wikipedia.org/wiki/Anderson–Darling_test

    The Anderson–Darling test is a statistical test of whether a given sample of data is drawn from a given probability distribution.In its basic form, the test assumes that there are no parameters to be estimated in the distribution being tested, in which case the test and its set of critical values is distribution-free.

  8. Hodges–Lehmann estimator - Wikipedia

    en.wikipedia.org/wiki/Hodges–Lehmann_estimator

    In the simplest case, the "Hodges–Lehmann" statistic estimates the location parameter for a univariate population. [2] [3] Its computation can be described quickly.For a dataset with n measurements, the set of all possible two-element subsets of it (,) such that ≤ (i.e. specifically including self-pairs; many secondary sources incorrectly omit this detail), which set has n(n + 1)/2 elements.

  9. Goodness of fit - Wikipedia

    en.wikipedia.org/wiki/Goodness_of_fit

    N = the sample size The resulting value can be compared with a chi-square distribution to determine the goodness of fit. The chi-square distribution has ( k − c ) degrees of freedom , where k is the number of non-empty bins and c is the number of estimated parameters (including location and scale parameters and shape parameters) for the ...