Search results
Results from the WOW.Com Content Network
Cardiac physiology or heart function is the study of healthy, unimpaired function of the heart: involving blood flow; myocardium structure; the electrical conduction system of the heart; the cardiac cycle and cardiac output and how these interact and depend on one another.
A slow heart rate of 60 or less beats per minute is defined as bradycardia. A fast heart rate of more than 100 beats per minute is defined as tachycardia. An arrhythmia is defined as one that is not physiological such as the lowered heart rate that a trained athlete may naturally have developed; the resting heart rates may be less than 60 bpm.
Cardiovascular physiology is the study of the cardiovascular system, specifically addressing the physiology of the heart ("cardio") and blood vessels ("vascular").. These subjects are sometimes addressed separately, under the names cardiac physiology and circulatory physiology.
This rate can be altered, however, by nerves that work to either increase heart rate (sympathetic nerves) or decrease it (parasympathetic nerves), as the body's oxygen demands change. Ultimately, muscle contraction revolves around a charged atom (ion) , calcium (Ca 2+ ) , [ 3 ] which is responsible for converting the electrical energy of the ...
The heart is the driver of the circulatory system, pumping blood through rhythmic contraction and relaxation. The rate of blood flow out of the heart (often expressed in L/min) is known as the cardiac output (CO). Blood being pumped out of the heart first enters the aorta, the largest artery of the body.
The heart is a muscular organ situated in the mediastinum.It consists of four chambers, four valves, two main arteries (the coronary arteries), and the conduction system. The left and right sides of the heart have different functions: the right side receives de-oxygenated blood through the superior and inferior venae cavae and pumps blood to the lungs through the pulmonary artery, and the left ...
“The heart will pump what it receives”- Starling’s law of the heart. The Frank–Starling mechanism describes the ability of the heart to change its force of contraction (and, hence, stroke volume) in response to changes in venous return. In other words, if the end-diastolic volume increases, there is a corresponding increase in stroke ...
The heart did not pump blood around, the heart's motion sucked blood in during diastole and the blood moved by the pulsation of the arteries themselves. [93] Galen believed the arterial blood was created by venous blood passing from the left ventricle to the right through 'pores' between the ventricles. [90]