Search results
Results from the WOW.Com Content Network
It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength. The SI unit for specific strength is Pa ⋅ m 3 / kg , or N ⋅m/kg, which is dimensionally equivalent to m 2 /s 2 , though the latter form is rarely used.
Specific energy has the same units as specific strength, which is related to the maximum specific energy of rotation an object can have without flying apart due to centrifugal force. The concept of specific energy is related to but distinct from the notion of molar energy in chemistry , that is energy per mole of a substance, which uses units ...
Chemical activities should be used to define chemical potentials, where the chemical potential depends on the temperature T, pressure p and the activity a i according to the formula: = + where R is the gas constant and μ o i is the value of μ i under standard conditions. Note that the choice of concentration scale affects both the ...
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
Ultimate strength is an attribute related to a material, rather than just a specific specimen made of the material, and as such it is quoted as the force per unit of cross section area (N/m 2). The ultimate strength is the maximum stress that a material can withstand before it breaks or weakens. [ 12 ]
Another kind of specific quantity, termed named specific quantity, is a generalization of the original concept. The divisor quantity is not restricted to mass, and name of the divisor is usually placed before "specific" in the full term (e.g., "thrust-specific fuel consumption"). Named and unnamed specific quantities are given for the terms below.
where z is the electrical charge on the ion, I is the ionic strength, ε and b are interaction coefficients and m and c are concentrations. The summation extends over the other ions present in solution, which includes the ions produced by the background electrolyte. The first term in these expressions comes from Debye–Hückel theory.
The strength of a bond can be estimated by comparing the atomic radii of the atoms that form the bond to the length of bond itself. For example, the atomic radius of boron is estimated at 85 pm, [10] while the length of the B–B bond in B 2 Cl 4 is 175 pm. [11] Dividing the length of this bond by the sum of each boron atom's radius gives a ratio of