enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adjugate matrix - Wikipedia

    en.wikipedia.org/wiki/Adjugate_matrix

    In linear algebra, the adjugate or classical adjoint of a square matrix A, adj (A), is the transpose of its cofactor matrix. [1][2] It is occasionally known as adjunct matrix, [3][4] or "adjoint", [5] though that normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose.

  3. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an complex matrix is an matrix obtained by transposing and applying complex conjugation to each entry (the complex conjugate of being , for real numbers and ). There are several notations, such as or , [1] , [2] or (often in physics) .

  4. Minor (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minor_(linear_algebra)

    In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix generated from A by removing one or more of its rows and columns. Minors obtained by removing just one row and one column from square matrices (first minors) are required for calculating matrix cofactors, which are useful for computing both the determinant and inverse of square matrices.

  5. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1] If A is a differentiable map from the real numbers to n × n matrices, then. where tr (X) is the trace of the matrix X and is its adjugate matrix. (The latter equality only holds if A (t) is ...

  6. Laplace expansion - Wikipedia

    en.wikipedia.org/wiki/Laplace_expansion

    Laplace expansion. In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression of the determinant of an n × n - matrix B as a weighted sum of minors, which are the determinants of some (n − 1) × (n − 1) - submatrices of B. Specifically, for every i, the Laplace expansion ...

  7. Talk:Adjugate matrix - Wikipedia

    en.wikipedia.org/wiki/Talk:Adjugate_matrix

    If you follow the "3x3 numeric matrix" example it doesn't make sense. The definition of adj(A) (the big matrix with 9 cofactors) clearly shows the bottom middle entry as -det(1 3 4 6), which would be -det(-3 -5 -1 -2) in the numeric example. This conflicts with the claim that the submatrix is (-3 2 3 -4).

  8. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Invertible matrix. In linear algebra, an invertible matrix is a square matrix which has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. Invertible matrices are the same size as their inverse.

  9. Matrix representation - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation

    Matrix representation is a method used by a computer language to store column-vector matrices of more than one dimension in memory. Fortran and C use different schemes for their native arrays. Fortran uses "Column Major" ( AoS ), in which all the elements for a given column are stored contiguously in memory.