Search results
Results from the WOW.Com Content Network
The relations can be made apparent by examining the vertex figures obtained by listing the faces adjacent to each vertex (remember that for uniform polyhedra all vertices are the same, that is vertex-transitive). For example, the cube has vertex figure 4.4.4, which is to say, three adjacent square faces.
In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.
Picture Name Schläfli symbol Vertex/Face configuration exact dihedral angle (radians) dihedral angle – exact in bold, else approximate (degrees) Platonic solids (regular convex)
A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...
Polyhedron: Class Number and properties Platonic solids (5, convex, regular) Archimedean solids (13, convex, uniform) Kepler–Poinsot polyhedra (4, regular, non-convex) Uniform polyhedra (75, uniform) Prismatoid: prisms, antiprisms etc. (4 infinite uniform classes) Polyhedra tilings (11 regular, in the plane) Quasi-regular polyhedra Johnson solids
In geometry, a vertex configuration is a shorthand notation for representing a polyhedron or tiling as the sequence of faces around a vertex. It has variously been called a vertex description , [ 1 ] [ 2 ] [ 3 ] vertex type , [ 4 ] [ 5 ] vertex symbol , [ 6 ] [ 7 ] vertex arrangement , [ 8 ] vertex pattern , [ 9 ] face-vector, [ 10 ] vertex ...
In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.
The smallest polyhedron is the tetrahedron with 4 triangular faces, 6 edges, and 4 vertices. Named polyhedra primarily come from the families of platonic solids, Archimedean solids, Catalan solids, and Johnson solids, as well as dihedral symmetry families including the pyramids, bipyramids, prisms, antiprisms, and trapezohedrons.