enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    gcd(m, n) (greatest common divisor of m and n) is the product of all prime factors which are both in m and n (with the smallest multiplicity for m and n). m and n are coprime (also called relatively prime) if gcd(m, n) = 1 (meaning they have no common prime factor).

  3. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.

  4. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n

  5. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    Synonyms for GCD include greatest common factor (GCF), highest common factor (HCF), highest common divisor (HCD), and greatest common measure (GCM). The greatest common divisor is often written as gcd( a , b ) or, more simply, as ( a , b ) , [ 3 ] although the latter notation is ambiguous, also used for concepts such as an ideal in the ring of ...

  6. Superior highly composite number - Wikipedia

    en.wikipedia.org/wiki/Superior_highly_composite...

    48 2 ⋅ 6 ⋅ 210 : 8 5040: 2 4 ⋅ 3 2 ⋅ 5 ⋅ 7 : 4,2,1,1 ... 120 is another superior highly composite number because it has the highest ratio of divisors to ...

  7. Bézout's identity - Wikipedia

    en.wikipedia.org/wiki/Bézout's_identity

    As an example, the greatest common divisor of 15 and 69 is 3, and 3 can be written as a combination of 15 and 69 as 3 = 15 × (−9) + 69 × 2, with Bézout coefficients −9 and 2. Many other theorems in elementary number theory , such as Euclid's lemma or the Chinese remainder theorem , result from Bézout's identity.

  8. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    Greatest common divisor = 2 × 2 × 3 = 12 Product = 2 × 2 × 2 × 2 × 3 × 2 × 2 × 3 × 3 × 5 = 8640. This also works for the greatest common divisor (gcd), except that instead of multiplying all of the numbers in the Venn diagram, one multiplies only the prime factors that are in the intersection. Thus the gcd of 48 and 180 is 2 × 2 × ...

  9. Coprime integers - Wikipedia

    en.wikipedia.org/wiki/Coprime_integers

    This is equivalent to their greatest common divisor (GCD) being 1. [2] One says also a is prime to b or a is coprime with b. The numbers 8 and 9 are coprime, despite the fact that neither—considered individually—is a prime number, since 1 is their only common divisor. On the other hand, 6 and 9 are not coprime, because they are both ...