enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Abelian group - Wikipedia

    en.wikipedia.org/wiki/Abelian_group

    Every subgroup of an abelian group is normal, so each subgroup gives rise to a quotient group. Subgroups, quotients, and direct sums of abelian groups are again abelian. The finite simple abelian groups are exactly the cyclic groups of prime order. [6]: 32 The concepts of abelian group and -module agree.

  3. Centralizer and normalizer - Wikipedia

    en.wikipedia.org/wiki/Centralizer_and_normalizer

    Containment occurs exactly when S is abelian. If H is a subgroup of G, then N G (H) contains H. If H is a subgroup of G, then the largest subgroup of G in which H is normal is the subgroup N G (H). If S is a subset of G such that all elements of S commute with each other, then the largest subgroup of G whose center contains S is the subgroup C ...

  4. Characteristic subgroup - Wikipedia

    en.wikipedia.org/wiki/Characteristic_subgroup

    A subgroup of H that is invariant under all inner automorphisms is called normal; also, an invariant subgroup. ∀φ ∈ Inn(G): φ(H) ≤ H. Since Inn(G) ⊆ Aut(G) and a characteristic subgroup is invariant under all automorphisms, every characteristic subgroup is normal. However, not every normal subgroup is characteristic.

  5. Normal subgroup - Wikipedia

    en.wikipedia.org/wiki/Normal_subgroup

    A normal subgroup of a normal subgroup of a group need not be normal in the group. That is, normality is not a transitive relation. The smallest group exhibiting this phenomenon is the dihedral group of order 8. [15] However, a characteristic subgroup of a normal subgroup is normal. [16] A group in which normality is transitive is called a T ...

  6. Abelian variety - Wikipedia

    en.wikipedia.org/wiki/Abelian_variety

    An abelian function is a meromorphic function on an abelian variety, which may be regarded therefore as a periodic function of n complex variables, having 2n independent periods; equivalently, it is a function in the function field of an abelian variety.

  7. Core (group theory) - Wikipedia

    en.wikipedia.org/wiki/Core_(group_theory)

    A core-free subgroup is a subgroup whose normal core is the trivial subgroup. Equivalently, it is a subgroup that occurs as the isotropy subgroup of a transitive, faithful group action. The solution for the hidden subgroup problem in the abelian case generalizes to finding the normal core in case of subgroups of arbitrary groups.

  8. Pure subgroup - Wikipedia

    en.wikipedia.org/wiki/Pure_subgroup

    The torsion subgroup of an abelian group is pure. The directed union of pure subgroups is a pure subgroup. Since in a finitely generated abelian group the torsion subgroup is a direct summand, one might ask if the torsion subgroup is always a direct summand of an abelian group. It turns out that it is not always a summand, but it is a pure ...

  9. Torsion subgroup - Wikipedia

    en.wikipedia.org/wiki/Torsion_subgroup

    An abelian group A is torsion-free if and only if it is flat as a Z-module, which means that whenever C is a subgroup of some abelian group B, then the natural map from the tensor product C ⊗ A to B ⊗ A is injective. Tensoring an abelian group A with Q (or any divisible group) kills torsion. That is, if T is a torsion group then T ⊗ Q = 0.