enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    Alternatively, if the constraints are all equality constraints and are all linear, they can be solved for some of the variables in terms of the others, and the former can be substituted out of the objective function, leaving an unconstrained problem in a smaller number of variables.

  3. Corner solution - Wikipedia

    en.wikipedia.org/wiki/Corner_solution

    For instance, from the example above in economics, if the maximal utility of two goods is achieved when the quantity of goods x and y are (−2, 5), and the utility is subject to the constraint x and y are greater than or equal to 0 (one cannot consume a negative quantity of goods) as is usually the case, then the actual solution to the problem ...

  4. Constraint satisfaction problem - Wikipedia

    en.wikipedia.org/wiki/Constraint_satisfaction...

    Constraint satisfaction problems on finite domains are typically solved using a form of search. The most used techniques are variants of backtracking, constraint propagation, and local search. These techniques are also often combined, as in the VLNS method, and current research involves other technologies such as linear programming. [14]

  5. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    For example, in economics the optimal profit to a player is calculated subject to a constrained space of actions, where a Lagrange multiplier is the change in the optimal value of the objective function (profit) due to the relaxation of a given constraint (e.g. through a change in income); in such a context is the marginal cost of the ...

  6. Constraint satisfaction - Wikipedia

    en.wikipedia.org/wiki/Constraint_satisfaction

    Other considered kinds of constraints are on real or rational numbers; solving problems on these constraints is done via variable elimination or the simplex algorithm. Constraint satisfaction as a general problem originated in the field of artificial intelligence in the 1970s (see for example (Laurière 1978)).

  7. Nonlinear programming - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_programming

    If the objective function is concave (maximization problem), or convex (minimization problem) and the constraint set is convex, then the program is called convex and general methods from convex optimization can be used in most cases. If the objective function is quadratic and the constraints are linear, quadratic programming techniques are used.

  8. Multi-objective optimization - Wikipedia

    en.wikipedia.org/wiki/Multi-objective_optimization

    In economics, many problems involve multiple objectives along with constraints on what combinations of those objectives are attainable.For example, consumer's demand for various goods is determined by the process of maximization of the utilities derived from those goods, subject to a constraint based on how much income is available to spend on those goods and on the prices of those goods.

  9. Lagrangian relaxation - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_relaxation

    The method penalizes violations of inequality constraints using a Lagrange multiplier, which imposes a cost on violations. These added costs are used instead of the strict inequality constraints in the optimization. In practice, this relaxed problem can often be solved more easily than the original problem.