Search results
Results from the WOW.Com Content Network
Internal conversion is an atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom. [1] [2] Thus, in internal conversion (often abbreviated IC), a high-energy electron is emitted from the excited atom, but not from the ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
The one-electron universe postulate, proposed by theoretical physicist John Wheeler in a telephone call to Richard Feynman in the spring of 1940, is the hypothesis that all electrons and positrons are actually manifestations of a single entity moving backwards and forwards in time. According to Feynman:
The notion of a zero-point energy is also important for cosmology, and physics currently lacks a full theoretical model for understanding zero-point energy in this context; in particular, the discrepancy between theorized and observed vacuum energy in the universe is a source of major contention. [4]
The observation of electron tracks that were independent of the frequency of the incident photon suggested a mechanism for electron ionization that was caused from an internal conversion of energy from a radiationless transition. Further investigation, and theoretical work using elementary quantum mechanics and transition rate/transition ...
The internal conversion coefficient may be empirically determined by the following formula: = There is no valid formulation for an equivalent concept for E0 (electric monopole) nuclear transitions. There are theoretical calculations that can be used to derive internal conversion coefficients.
This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons , quarks , gauge bosons and the Higgs boson .
A corollary of Kasha's rule is the Vavilov rule, which states that the quantum yield of luminescence is generally independent of the excitation wavelength. [4] [7] This can be understood as a consequence of the tendency – implied by Kasha's rule – for molecules in upper states to relax to the lowest excited state non-radiatively.