Search results
Results from the WOW.Com Content Network
Within the 20-year timespan, many scientists have actively contributed to examining and reevaluating Hager's acid-growth hypothesis. Despite the accumulation of observations that evidently identify the final target of the auxin-induced action to be H +-ATPase, which excretes H + protons to the apoplast and take in K + ions through its rectifying K + channel in the following years, the ...
The most important member of the auxin family is indole-3-acetic acid (IAA), [7] which generates the majority of auxin effects in intact plants, and is the most potent native auxin. And as native auxin, its equilibrium is controlled in many ways in plants, from synthesis, through possible conjugation to degradation of its molecules, always ...
Indole-3-acetic acid (IAA, 3-IAA) is the most common naturally occurring plant hormone of the auxin class. It is the best known of the auxins, and has been the subject of extensive studies by plant physiologists. [1] IAA is a derivative of indole, containing a carboxymethyl substituent. It is a colorless solid that is soluble in polar organic ...
2,4,5-Trichlorophenoxyacetic acid (also known as 2,4,5-T), a synthetic auxin, is a chlorophenoxy acetic acid herbicide used to defoliate broad-leafed plants. It was developed in the late 1940s, synthesized by reaction of 2,4,5-Trichlorophenol and chloroacetic acid. It was widely used in the agricultural industry until being phased out, starting ...
Indole-3-butyric acid (1H-indole-3-butanoic acid, IBA) is a white to light-yellow crystalline solid, with the molecular formula C 12 H 13 NO 2. It melts at 125°C in atmospheric pressure and decomposes before boiling. IBA is a plant hormone in the auxin family and is an ingredient in many commercial horticultural plant rooting products.
Polar auxin transport (PAT) is directional and active flow of auxin molecules through the plant tissues. The flow of auxin molecules through the neighboring cells is driven by carriers (type of membrane transport protein) in the cell-to-cell fashion (from one cell to other cell and then to the next one) and the direction of the flow is determined by the localization of the carriers on the ...
A uniform concentration of auxin causes the root to grow straight down. This is a form of positive gravitropism where the root grows along the gravity vector. Should the root lie horizontally, then the statoliths will displace sideways to the cell membrane and induce a change in auxin distribution that triggers the root to bend and grow ...
Lack of the plant hormone auxin can cause abnormal growth (right) Plant hormones (or phytohormones) are signal molecules, produced within plants, that occur in extremely low concentrations. Plant hormones control all aspects of plant growth and development, including embryogenesis, [1] the regulation of organ size, pathogen defense, [2] [3 ...