Search results
Results from the WOW.Com Content Network
A sodium-cooled fast reactor is a fast neutron reactor cooled by liquid sodium. The initials SFR in particular refer to two Generation IV reactor proposals, one based on existing liquid metal cooled reactor (LMFR) technology using mixed oxide fuel (MOX), and one based on the metal-fueled integral fast reactor .
TerraPower selected Kemmerer, Wyoming as the site for a 345 MWe Natrium reactor using a molten salt energy storage system. The reactor can temporarily boost output to 500 MWe, enabling the plant to integrate with renewable resources. [9] In June 2024 the site broke ground, beginning preparation for the as-yet unapproved reactor. [10]
The reactor is a sodium-cooled fast reactor, which uses liquid sodium as the coolant. [4] It uses two separate sodium loops, and these are connected to a main water-cooled loop which feeds the steam generators and turbines for producing electricity. [7] The sodium coolant is pressurized to 5.5 MPa, and is heated to over 500 °C in the reactor. [6]
The BN-1200 reactor is a sodium-cooled fast breeder reactor project, under development by OKBM Afrikantov in Zarechny, Russia. The BN-1200 is based on the earlier BN-600 and especially BN-800, with which it shares a number of features. The reactor's name comes from its electrical output, nominally 1220 MWe.
A breeder reactor is a nuclear reactor that generates more fissile material than it consumes. [1] These reactors can be fueled with more-commonly available isotopes of uranium and thorium, such as uranium-238 and thorium-232, as opposed to the rare uranium-235 which is used in conventional reactors.
The BN-800 reactor (Russian: реактор БН–800) is a sodium-cooled fast breeder reactor, built at the Beloyarsk Nuclear Power Station, in Zarechny, Sverdlovsk Oblast, Russia. The reactor is designed to generate 880 MW of electrical power.
The actual reactor would be located in a sealed, cylindrical vault 30 m (98 ft) underground, while the building above ground would be 22×16×11 m (72×52.5×36 ft) in size. This power plant is designed to provide 10 megawatts of electrical power with a 50 MW version available in the future. [3] The 4S is a fast neutron sodium reactor
The melting point of sodium is 98 °C (208 °F), which means that liquid sodium can flow freely at high temperatures between about 400 and 700 °C (750 and 1,300 °F). Nuclear fission cores typically operate at about 600 °C (1,100 °F). The reactor is designed to be intrinsically safe in a wide range