Search results
Results from the WOW.Com Content Network
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.
Very often, the measure is used in terms of milliequivalents of solute per litre of solution (or milliNormal, where meq/L = mN). This is especially common for measurement of compounds in biological fluids ; for instance, the healthy level of potassium in the blood of a human is defined between 3.5 and 5.0 mEq/L.
Environmental laboratories typically report concentrations for anion and cation parameters using units of mass/volume, usually mg/L. In order to convert the mass concentration to an equivalent concentration the following mathematical relationship is used: (mass concentration) * (ionic charge) / (molecular weight) = (equivalent concentration)
Alkalinity is typically reported as mg/L as CaCO 3. (The conjunction "as" is appropriate in this case because the alkalinity results from a mixture of ions but is reported "as if" all of this is due to CaCO 3.) This can be converted into milliequivalents per Liter (meq/L) by dividing by 50 (the approximate MW of CaCO 3 divided by 2).
V eq is the volume of titrant (ml) consumed by the crude oil sample and 1 ml of spiking solution at the equivalent point, b eq is the volume of titrant (ml) consumed by 1 ml of spiking solution at the equivalent point, 56.1 g/mol is the molecular weight of KOH, W oil is the mass of the sample in grams. The normality (N) of titrant is calculated as:
It is necessary to calculate the mass of a solid acid which will react with about 20 cm 3 of this solution (for a titration using a 25 cm 3 burette): suitable solid acids include oxalic acid dihydrate, potassium hydrogen phthalate and potassium hydrogen iodate. The equivalent weights of the three acids 63.04 g, 204.23 g and 389.92 g ...
A piper diagram and two ternary diagrams on the composition of intrusive volcanic rocks; see QAPF diagram. A Piper diagram is a graphic procedure proposed by Arthur M. Piper in 1944 for presenting water chemistry data to help in understanding the sources of the dissolved constituent salts in water.
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [2]