Search results
Results from the WOW.Com Content Network
Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus.
For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.
where is the volume fraction of the fibers in the composite (and is the volume fraction of the matrix).. If it is assumed that the composite material behaves as a linear-elastic material, i.e., abiding Hooke's law = for some elastic modulus of the composite and some strain of the composite , then equations 1 and 2 can be combined to give
Even without knowledge that we are working in the multiplicative group of integers modulo n, we can show that a actually has an order by noting that the powers of a can only take a finite number of different values modulo n, so according to the pigeonhole principle there must be two powers, say s and t and without loss of generality s > t, such that a s ≡ a t (mod n).
The most direct method of calculating a modular exponent is to calculate b e directly, then to take this number modulo m. Consider trying to compute c, given b = 4, e = 13, and m = 497: c ≡ 4 13 (mod 497) One could use a calculator to compute 4 13; this comes out to 67,108,864.
Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. [3] [4] Computing matrix products is a central operation in all computational applications of linear algebra.
In modular arithmetic, the integers coprime (relatively prime) to n from the set {,, …,} of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n.
This region is a hyperbolic triangle. It has vertices at 1 / 2 + i √ 3 / 2 and − 1 / 2 + i √ 3 / 2 , where the angle between its sides is π / 3 , and a third vertex at infinity, where the angle between its sides is 0. There is a strong connection between the modular group and elliptic curves.