Search results
Results from the WOW.Com Content Network
The Bode phase plot is the graph of the phase, commonly expressed in degrees, of the argument function ((=)) as a function of . The phase is plotted on the same logarithmic ω {\displaystyle \omega } -axis as the magnitude plot, but the value for the phase is plotted on a linear vertical axis.
Phase margin is the difference (expressed as a positive number) between 180° and the phase shift where the magnitude of the loop transfer function is 0 dB. It is the additional phase shift that can be tolerated, with no gain change, while remaining stable [3].Gain margin is the difference (expressed as a positive dB value) between 0 dB and the ...
Bode's sensitivity integral, discovered by Hendrik Wade Bode, is a formula that quantifies some of the limitations in feedback control of linear parameter invariant systems. Let L be the loop transfer function and S be the sensitivity function. In the diagram, P is a dynamical process that has a transfer function P(s).
Hendrik Wade Bode (/ ˈ b oʊ d i / BOH-dee, Dutch:; [1] December 24, 1905 – June 21, 1982) [1] was an American engineer, researcher, inventor, author and scientist, of Dutch ancestry. As a pioneer of modern control theory and electronic telecommunications he revolutionized both the content and methodology of his chosen fields of research.
Figure 5: Bode gain plot to find phase margin; scales are logarithmic, so labeled separations are multiplicative factors. For example, f 0 dB = βA 0 × f 1. Next, the choice of pole ratio τ 1 /τ 2 is related to the phase margin of the feedback amplifier. [9] The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode ...
This work has been released into the public domain by its author, Mik81.This applies worldwide. In some countries this may not be legally possible; if so: Mik81 grants anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
Magnitude transfer function of a bandpass filter with lower 3 dB cutoff frequency f 1 and upper 3 dB cutoff frequency f 2 Bode plot (a logarithmic frequency response plot) of any first-order low-pass filter with a normalized cutoff frequency at =1 and a unity gain (0 dB) passband.
The root locus plots the poles of the closed loop transfer function in the complex s-plane as a function of a gain parameter (see pole–zero plot). Evans also invented in 1948 an analog computer to compute root loci, called a "Spirule" (after "spiral" and " slide rule "); it found wide use before the advent of digital computers .