Ad
related to: optoacoustic spectroscopy and detection of carbon gas and nitrogen monoxide
Search results
Results from the WOW.Com Content Network
In 1938 Mark Leonidovitch Veingerov revived the interest in the photoacoustic effect, being able to use it in order to measure very small carbon dioxide concentration in nitrogen gas (as low as 0.2% in volume). [8] Since then research and applications grew faster and wider, acquiring several fold more detection sensitivity.
Photoacoustic spectroscopy is the measurement of the effect of absorbed electromagnetic energy (particularly of light) on matter by means of acoustic detection. The discovery of the photoacoustic effect dates to 1880 when Alexander Graham Bell showed that thin discs emitted sound when exposed to a beam of sunlight that was rapidly interrupted with a rotating slotted disk.
A nondispersive infrared sensor (or NDIR sensor) is a simple spectroscopic sensor often used as a gas detector.It is non-dispersive in the fact that no dispersive element (e.g a prism or diffraction grating as is often present in other spectrometers) is used to separate out (like a monochromator) the broadband light into a narrow spectrum suitable for gas sensing.
An Orsat gas analyser or Orsat apparatus is a piece of laboratory equipment used to analyse a gas sample (typically fossil fuel flue gas) for its oxygen, carbon monoxide and carbon dioxide content. Although largely replaced by instrumental techniques, the Orsat remains a reliable method of measurement and is relatively simple to use.
In atmospheric chemistry, differential optical absorption spectroscopy (DOAS) is used to measure concentrations of trace gases. When combined with basic optical spectrometers such as prisms or diffraction gratings and automated, ground-based observation platforms, it presents a cheap and powerful means for the measurement of trace gas species ...
Photoacoustic imaging or optoacoustic imaging is a biomedical imaging modality based on the photoacoustic effect.Non-ionizing laser pulses are delivered into biological tissues and part of the energy will be absorbed and converted into heat, leading to transient thermoelastic expansion and thus wideband (i.e. MHz) ultrasonic emission.
Cantilever enhanced photoacoustic spectroscopy enables the detection of small amount of trace gases which is vital in many applications. Photoacoustic spectroscopy is one of the most sensitive optical detection schemes. It is based on detecting a gas specific acoustic wave generated that originates from the absorption of light in the medium ...
The design of the flame ionization detector varies from manufacturer to manufacturer, but the principles are the same. Most commonly, the FID is attached to a gas chromatography system. The eluent exits the gas chromatography column (A) and enters the FID detector’s oven (B). The oven is needed to make sure that as soon as the eluent exits ...
Ad
related to: optoacoustic spectroscopy and detection of carbon gas and nitrogen monoxide