Search results
Results from the WOW.Com Content Network
Sobolev's original proof of the Sobolev embedding theorem relied on the following, sometimes known as the Hardy–Littlewood–Sobolev fractional integration theorem. An equivalent statement is known as the Sobolev lemma in (Aubin 1982, Chapter 2). A proof is in (Stein 1970, Chapter V, §1.3). Let 0 < α < n and 1 < p < q < ∞.
[1] [2] In the following year, both authors improved their results and published them independently. [3] [4] [5] Nonetheless, a complete proof of the inequality went missing in the literature for a long time. Indeed, to some extent, both original works of Gagliardo and Nirenberg do not contain a full and rigorous argument proving the result.
In mathematics, a Sobolev mapping is a mapping between manifolds which has smoothness in some sense. Sobolev mappings appear naturally in manifold-constrained problems in the calculus of variations and partial differential equations , including the theory of harmonic maps .
When Ω is a ball, the above inequality is called a (p,p)-Poincaré inequality; for more general domains Ω, the above is more familiarly known as a Sobolev inequality. The necessity to subtract the average value can be seen by considering constant functions for which the derivative is zero while, without subtracting the average, we can have ...
The Sobolev spaces , for < are defined as the closure of the set of compactly supported test functions with respect to the , ()-norm. The following alternative characterization holds: The following alternative characterization holds:
In mathematics, Friedrichs's inequality is a theorem of functional analysis, due to Kurt Friedrichs. It places a bound on the L p norm of a function using L p bounds on the weak derivatives of the function and the geometry of the domain , and can be used to show that certain norms on Sobolev spaces are equivalent.
In mathematics, a Hilbert manifold is a manifold modeled on Hilbert spaces. Thus it is a separable Hausdorff space in which each point has a neighbourhood homeomorphic to an infinite dimensional Hilbert space. The concept of a Hilbert manifold provides a possibility of extending the theory of manifolds to infinite-dimensional setting.
In mathematics, logarithmic Sobolev inequalities are a class of inequalities involving the norm of a function f, its logarithm, and its gradient . These inequalities were discovered and named by Leonard Gross, who established them in dimension-independent form, [1] [2] in the context of constructive quantum field theory. Similar results were ...