Search results
Results from the WOW.Com Content Network
The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ ( r ) = ρ 0 − ( ρ 0 − ρ 1 ) r / R , and the ...
Cavendish's stated aim was the "weighing of Earth", that is, determining the average density of Earth and the Earth's mass. His result, ρ 🜨 = 5.448(33) g⋅cm −3, corresponds to value of G = 6.74(4) × 10 −11 m 3 ⋅kg −1 ⋅s −2. It is surprisingly accurate, about 1% above the modern value (comparable to the claimed relative ...
Conventional mass is defined as follows: "For a mass at 20 °C, 'conventional mass' is the mass of a reference standard of density 8,000 kg/m 3 which it balances in air with a density of 1.2 kg/m 3." The effect is a small one, 150 ppm for stainless steel mass standards, but the appropriate corrections are made during the manufacture of all ...
The g-force acting on a stationary object resting on the Earth's surface is 1 g (upwards) and results from the resisting reaction of the Earth's surface bearing upwards equal to an acceleration of 1 g, and is equal and opposite to gravity. The number 1 is approximate, depending on location.
[1] [2] The acceleration of a body near the surface of the Earth is due to the combined effects of gravity and centrifugal acceleration from the rotation of the Earth (but the latter is small enough to be negligible for most purposes); the total (the apparent gravity) is about 0.5% greater at the poles than at the Equator. [3] [4]
[2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude. A conventional standard value is defined exactly as 9.80665 m/s² (about 32.1740 ft/s²). Locations of significant variation from this value are known as gravity ...
For points inside a spherically symmetric distribution of matter, Newton's shell theorem can be used to find the gravitational force. The theorem tells us how different parts of the mass distribution affect the gravitational force measured at a point located a distance r 0 from the center of the mass distribution: [13]
An Earth mass (denoted as M 🜨, M ♁ or M E, where 🜨 and ♁ are the astronomical symbols for Earth), is a unit of mass equal to the mass of the planet Earth. The current best estimate for the mass of Earth is M 🜨 = 5.9722 × 10 24 kg, with a relative uncertainty of 10 −4. [2] It is equivalent to an average density of 5515 kg/m 3.