Search results
Results from the WOW.Com Content Network
This is a statement in the metalanguage, not the object language. The notation a ≡ b {\displaystyle a\equiv b} may occasionally be seen in physics, meaning the same as a := b {\displaystyle a:=b} .
For example, Hamilton uses two symbols = and ≠ when he defines the notion of a valuation v of any well-formed formulas (wffs) A and B in his "formal statement calculus" L. A valuation v is a function from the wffs of his system L to the range (output) { T, F }, given that each variable p 1 , p 2 , p 3 in a wff is assigned an arbitrary truth ...
The formula I(T), which says that T is inconsistent, is thus an existential formula. A witness for the inconsistency of T is a particular proof of "0 = 1" in T . Boolos, Burgess, and Jeffrey (2002:81) define the notion of a witness with the example, in which S is an n -place relation on natural numbers, R is an (n+1) -place recursive relation ...
A closed formula, also ground formula or sentence, is a formula in which there are no free occurrences of any variable. If A is a formula of a first-order language in which the variables v 1, …, v n have free occurrences, then A preceded by ∀v 1 ⋯ ∀v n is a universal closure of A.
A propositional logic formula, also called Boolean expression, is built from variables, operators AND (conjunction, also denoted by ∧), OR (disjunction, ∨), NOT (negation, ¬), and parentheses. A formula is said to be satisfiable if it can be made TRUE by assigning appropriate logical values (i.e. TRUE, FALSE) to
A formula of propositional logic is a tautology if the formula itself is always true, regardless of which valuation is used for the propositional variables. There are infinitely many tautologies. In many of the following examples A represents the statement "object X is bound", B represents "object X is a book", and C represents "object X is on ...
In computer science and recursion theory the McCarthy Formalism (1963) of computer scientist John McCarthy clarifies the notion of recursive functions by use of the IF-THEN-ELSE construction common to computer science, together with four of the operators of primitive recursive functions: zero, successor, equality of numbers and composition.
An important set of problems in computational complexity involves finding assignments to the variables of a Boolean formula expressed in conjunctive normal form, such that the formula is true. The k -SAT problem is the problem of finding a satisfying assignment to a Boolean formula expressed in CNF in which each disjunction contains at most k ...