enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zero element - Wikipedia

    en.wikipedia.org/wiki/Zero_element

    In mathematics, the zero ideal in a ring is the ideal {} consisting of only the additive identity (or zero element). The fact that this is an ideal follows directly from the definition. The fact that this is an ideal follows directly from the definition.

  3. Absorbing element - Wikipedia

    en.wikipedia.org/wiki/Absorbing_element

    The most well known example of an absorbing element comes from elementary algebra, where any number multiplied by zero equals zero. Zero is thus an absorbing element. The zero of any ring is also an absorbing element. For an element r of a ring R, r0 = r(0 + 0) = r0 + r0, so 0 = r0, as zero is the unique element a for which r − r = a for any ...

  4. Null (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Null_(mathematics)

    In set theory, the empty set, that is, the set with zero elements, denoted "{}" or "∅", may also be called null set. [3] [5] In measure theory, a null set is a (possibly nonempty) set with zero measure. A null space of a mapping is the part of the domain that is mapped into the null element of the image (the inverse image of the null element).

  5. 0 - Wikipedia

    en.wikipedia.org/wiki/0

    In abstract algebra, 0 is commonly used to denote a zero element, which is the identity element for addition (if defined on the structure under consideration) and an absorbing element for multiplication (if defined). (Such elements may also be called zero elements.) Examples include identity elements of additive groups and vector spaces.

  6. Initial and terminal objects - Wikipedia

    en.wikipedia.org/wiki/Initial_and_terminal_objects

    The zero ring consisting only of a single element 0 = 1 is a terminal object. In Rig, the category of rigs with unity and unity-preserving morphisms, the rig of natural numbers N is an initial object. The zero rig, which is the zero ring, consisting only of a single element 0 = 1 is a terminal object.

  7. Image (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Image_(mathematics)

    In mathematics, for a function :, the image of an input value is the single output value produced by when passed . The preimage of an output value y {\displaystyle y} is the set of input values that produce y {\displaystyle y} .

  8. Empty set - Wikipedia

    en.wikipedia.org/wiki/Empty_set

    In mathematics, the empty set or void set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. [1] Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set , while in other theories, its existence can be deduced.

  9. Identity element - Wikipedia

    en.wikipedia.org/wiki/Identity_element

    In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. [1] [2] For example, 0 is an identity element of the addition of real numbers. This concept is used in algebraic structures such as groups and rings.