Search results
Results from the WOW.Com Content Network
Minkowski space first approximates the universe without gravity; the pseudo-Riemannian manifolds of general relativity describe spacetime with matter and gravity. 10 dimensions are used to describe superstring theory (6D hyperspace + 4D), 11 dimensions can describe supergravity and M-theory (7D hyperspace + 4D), and the state-space of quantum ...
In everyday life, there are three familiar dimensions (3D) of space: height, width and length. Einstein's general theory of relativity treats time as a dimension on par with the three spatial dimensions; in general relativity, space and time are not modeled as separate entities but are instead unified to a four-dimensional (4D) spacetime. In ...
Some physicists (e.g., John Baez et al.) have speculated that the exceptional Lie groups E 6, E 7 and E 8 having maximum orthogonal subgroups SO(10), SO(12) and SO(16) may be related to theories in 10, 12 and 16 dimensions; 10 dimensions corresponding to string theory and the 12 and 16 dimensional theories being yet undiscovered but would be ...
The core breakthrough for the 10-dimensional theory, known as the first superstring revolution, was a demonstration by Michael B. Green, John H. Schwarz and David Gross that there are only three supergravity models in 10 dimensions which have gauge symmetries and in which all of the gauge and gravitational anomalies cancel.
Inertial force that appears to act on all objects when viewed in a rotating frame of reference: N⋅rad = kg⋅m⋅rad⋅s −2: L M T −2: bivector Crackle: c →: Change of jounce per unit time: the fifth time derivative of position m/s 5: L T −5: vector Current density: J →: Electric current per unit cross-section area A/m 2: L −2 I ...
In string theory, spacetime is ten-dimensional (nine spatial dimensions, and one time dimension), while in M-theory it is eleven-dimensional (ten spatial dimensions, and one time dimension). In order to describe real physical phenomena using these theories, one must therefore imagine scenarios in which these extra dimensions would not be ...
A diagram of dimensions 1, 2, 3, and 4. In mathematics, the dimension of a vector space V is the cardinality (i.e., the number of vectors) of a basis of V over its base field. [1] [2] It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to distinguish it from other types of dimension.
Its dihedral angle is cos −1 (1/10), or approximately 84.26°. It can also be called a hendecaxennon , or hendeca-10-tope , as an 11- facetted polytope in 10-dimensions. The name hendecaxennon is derived from hendeca for 11 facets in Greek and -xenn (variation of ennea for nine), having 9-dimensional facets, and -on .