Search results
Results from the WOW.Com Content Network
The normal magic constant of order n is n 3 + n / 2 . The largest magic constant of normal magic square which is also a: triangular number is 15 (solve the Diophantine equation x 2 = y 3 + 16y + 16, where y is divisible by 4); square number is 1 (solve the Diophantine equation x 2 = y 3 + 4y, where y is even);
144 (one hundred [and] forty-four) is the natural number following 143 and preceding 145. It is coincidentally both the square of twelve (a dozen dozens , or one gross .) and the twelfth Fibonacci number , and the only nontrivial number in the sequence that is square.
n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n 4 as n tesseracted, hypercubed, zenzizenzic, biquadrate or supercubed instead of “to the power of 4”. The sequence of fourth powers of integers, known as biquadrates or tesseractic ...
B n is the number of partitions of a set with n elements. A000110: Euler zigzag numbers E n: 1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, ... E n is the number of linear extensions of the "zig-zag" poset. A000111: Lazy caterer's sequence: 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, ... The maximal number of pieces formed when slicing a pancake with n cuts ...
This gnomonic technique also provides a mathematical proof that the sum of the first n odd numbers is n 2; the figure illustrates 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 = 64 = 8 2. There is a similar gnomon with centered hexagonal numbers adding up to make cubes of each integer number.
An example of a 3 × 3 × 3 magic cube. In this example, no slice is a magic square. In this case, the cube is classed as a simple magic cube.. In mathematics, a magic cube is the 3-dimensional equivalent of a magic square, that is, a collection of integers arranged in an n × n × n pattern such that the sums of the numbers on each row, on each column, on each pillar and on each of the four ...
Sociable Dudeney numbers and amicable Dudeney numbers are the powers of their respective roots. The number of iterations i {\displaystyle i} needed for F p , b i ( n ) {\displaystyle F_{p,b}^{i}(n)} to reach a fixed point is the Dudeney function's persistence of n {\displaystyle n} , and undefined if it never reaches a fixed point.
A number n that has more divisors than any x < n is a highly composite number (though the first two such numbers are 1 and 2). Composite numbers have also been called "rectangular numbers", but that name can also refer to the pronic numbers, numbers that are the product of two consecutive integers.