Search results
Results from the WOW.Com Content Network
The Kruskal-Wallis test can be implemented in many programming tools and languages. We list here only the open source free software packages: In Python's SciPy package, the function scipy.stats.kruskal can return the test result and p-value. [18] R base-package has an implement of this test using kruskal.test. [19]
The most common non-parametric test for the one-factor model is the Kruskal-Wallis test. The Kruskal-Wallis test is based on the ranks of the data. The advantage of the Van Der Waerden test is that it provides the high efficiency of the standard ANOVA analysis when the normality assumptions are in fact satisfied, but it also provides the ...
In statistics, the Jonckheere trend test [1] (sometimes called the Jonckheere–Terpstra [2] test) is a test for an ordered alternative hypothesis within an independent samples (between-participants) design. It is similar to the Kruskal-Wallis test in that the null hypothesis is that several independent samples are from the same population ...
Median test (also Mood’s median-test, Westenberg-Mood median test or Brown-Mood median test) is a special case of Pearson's chi-squared test.It is a nonparametric test that tests the null hypothesis that the medians of the populations from which two or more samples are drawn are identical.
The ANOVA tests the null hypothesis, which states that samples in all groups are drawn from populations with the same mean values. To do this, two estimates are made of the population variance. These estimates rely on various assumptions . The ANOVA produces an F-statistic, the ratio of the variance calculated among the means to the variance ...
The following table defines the possible outcomes when testing multiple null hypotheses. Suppose we have a number m of null hypotheses, denoted by: H 1, H 2, ..., H m. Using a statistical test, we reject the null hypothesis if the test is declared significant. We do not reject the null hypothesis if the test is non-significant.
The following table defines the possible outcomes when testing multiple null hypotheses. Suppose we have a number m of null hypotheses, denoted by: H 1, H 2, ..., H m. Using a statistical test, we reject the null hypothesis if the test is declared significant. We do not reject the null hypothesis if the test is non-significant.
The following table defines the possible outcomes when testing multiple null hypotheses. Suppose we have a number m of null hypotheses, denoted by: H 1, H 2, ..., H m. Using a statistical test, we reject the null hypothesis if the test is declared significant. We do not reject the null hypothesis if the test is non-significant.