Search results
Results from the WOW.Com Content Network
A hadron is a composite subatomic particle.Every hadron must fall into one of the two fundamental classes of particle, bosons and fermions. In particle physics, a hadron (/ ˈ h æ d r ɒ n / ⓘ; from Ancient Greek ἁδρός (hadrós) 'stout, thick') is a composite subatomic particle made of two or more quarks held together by the strong interaction.
In particle physics, a lepton is an elementary particle of half-integer spin (spin 1 / 2 ) that does not undergo strong interactions. [1] Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), including the electron, muon, and tauon, and neutral leptons, better known as neutrinos.
In cosmological models of the Big Bang, the lepton epoch was the period in the evolution of the early universe in which the leptons dominated the mass of the Universe.It started roughly 1 second after the Big Bang, after the majority of hadrons and anti-hadrons annihilated each other at the end of the hadron epoch. [1]
Leptons, on the other hand, are not composed of quarks and as such do not participate in the strong interaction. The best known baryons are protons and neutrons, which make up most of the mass of the visible matter in the universe, whereas electrons, the other major component of atoms, are leptons.
There are six leptons in total; the three charged leptons are called "electron-like leptons", while the neutral leptons are called "neutrinos". Neutrinos are known to oscillate, so that neutrinos of definite flavor do not have definite mass: Instead, they exist in a superposition of mass eigenstates.
The temperature of the universe had fallen sufficiently to allow the quarks from the preceding quark epoch to bind together into hadrons. Initially, the temperature was high enough to allow the formation of hadron/anti-hadron pairs, which kept matter and anti-matter in thermal equilibrium. Following the annihilation of matter and antimatter, a ...
The Standard Model recognizes two types of elementary fermions: quarks and leptons. In all, the model distinguishes 24 different fermions. In all, the model distinguishes 24 different fermions. There are six quarks ( up , down , strange , charm , bottom and top ), and six leptons ( electron , electron neutrino , muon , muon neutrino , tauon and ...
Owing to a phenomenon known as color confinement, quarks are never found in isolation; they can be found only within hadrons, which include baryons (such as protons and neutrons) and mesons, or in quark–gluon plasmas. [2] [3] [nb 1] For this reason, much of what is known about quarks has been drawn from observations of hadrons.